An estimated 170 million individuals worldwide are infected with hepatitis C virus (HCV), a serious cause of chronic liver disease. Current interferon-based therapy for treating HCV infection has an unsatisfactory cure rate, and the development of more efficient drugs is needed. During the early stages of HCV infections, various host genes are differentially regulated, and it is possible that inhibition of host proteins affords a therapeutic strategy for treatment of HCV infection. Using an HCV subgenomic replicon cell culture system, here we have identified, from a secondary fungal metabolite, a lipophilic long-chain base compound, NA255 (1), a previously unknown small-molecule HCV replication inhibitor. NA255 prevents the de novo synthesis of sphingolipids, major lipid raft components, thereby inhibiting serine palmitoyltransferase, and it disrupts the association among HCV nonstructural (NS) viral proteins on the lipid rafts. Furthermore, we found that NS5B protein has a sphingolipid-binding motif in its molecular structure and that the domain was able to directly interact with sphingomyelin. Thus, NA255 is a new anti-HCV replication inhibitor that targets host lipid rafts, suggesting that inhibition of sphingolipid metabolism may provide a new therapeutic strategy for treatment of HCV infection.
In two series of small-molecule ligands, one inhibiting human cathepsin L (hcatL) and the other MEK1 kinase, biological affinities were found to strongly increase when an aryl ring of the inhibitors is substituted with the larger halogens Cl, Br, and I, but to decrease upon F substitution. X-ray co-crystal structure analyses revealed that the higher halides engage in halogen bonding (XB) with a backbone C=O in the S3 pocket of hcatL and in a back pocket of MEK1. While the S3 pocket is located at the surface of the enzyme, which provides a polar environment, the back pocket in MEK1 is deeply buried in the protein and is of pronounced apolar character. This study analyzes environmental effects on XB in protein-ligand complexes. It is hypothesized that energetic gains by XB are predominantly not due to water replacements but originate from direct interactions between the XB donor (Caryl-X) and the XB acceptor (C=O) in the correct geometry. New X-ray co-crystal structures in the same crystal form (space group P2(1)2(1)2(1)) were obtained for aryl chloride, bromide, and iodide ligands bound to hcatL. These high-resolution structures reveal that the backbone C=O group of Gly61 in most hcatL co-crystal structures maintains water solvation while engaging in XB. An aryl-CF3-substituted ligand of hcatL with an unexpectedly high affinity was found to adopt the same binding geometry as the aryl halides, with the CF3 group pointing to the C=O group of Gly61 in the S3 pocket. In this case, a repulsive F2C-F⋅⋅⋅O=C contact apparently is energetically overcompensated by other favorable protein-ligand contacts established by the CF3 group.
Tumors with mutant RAS are often dependent on extracellular signal–regulated kinase (ERK) signaling for growth; however, MEK inhibitors have only marginal antitumor activity in these tumors. MEK inhibitors relieve ERK-dependent feedback inhibition of RAF and cause induction of MEK phosphorylation. We have now identified a MEK inhibitor, CH5126766 (RO5126766), that has the unique property of inhibiting RAF kinase as well. CH5126766 binding causes MEK to adopt a conformation in which it cannot be phosphorylated by and released from RAF. This results in formation of a stable MEK/RAF complex and inhibition of RAF kinase. Consistent with this mechanism, this drug does not induce MEK phosphorylation. CH5126766 inhibits ERK signaling output more effectively than a standard MEK inhibitor that induces MEK phosphorylation and has potent antitumor activity as well. These results suggest that relief of RAF feedback limits pathway inhibition by standard MEK inhibitors. CH5126766 represents a new type of MEK inhibitor that causes MEK to become a dominant-negative inhibitor of RAF and that, in doing so, may have enhanced therapeutic activity in ERK-dependent tumors with mutant RAS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.