Abstract-In 2011, Japan was hit by a tsunami that was generated by the greatest earthquake in its history. The first tsunami warning was announced 3 min after the earthquake, as is normal, but failed to estimate the actual tsunami height. Most of the structural countermeasures were not designed for the huge tsunami that was generated by the magnitude M = 9.0 earthquake; as a result, many were destroyed and did not stop the tsunami. These structures included breakwaters, seawalls, water gates, and control forests. In this paper we discuss the performance of these countermeasures, and the mechanisms by which they were damaged; we also discuss damage to residential houses, commercial and public buildings, and evacuation buildings. Some topics regarding tsunami awareness and mitigation are discussed. The failures of structural defenses are a reminder that structural (hard) measures alone were not sufficient to protect people and buildings from a major disaster such as this. These defenses might be able to reduce the impact but should be designed so that they can survive even if the tsunami flows over them. Coastal residents should also understand the function and limit of the hard measures. For this purpose, nonstructural (soft) measures, for example experience and awareness, are very important for promoting rapid evacuation in the event of a tsunami. An adequate communication system for tsunami warning messages and more evacuation shelters with evacuation routes in good condition might support a safe evacuation process. The combination of both hard and soft measures is very important for reducing the loss caused by a major tsunami. This tsunami has taught us that natural disasters can occur repeatedly and that their scale is sometimes larger than expected.
Hindcasting of a tsunami by numerical simulations is a process of lengthy and complicated deductions, knowing only the final results such as run-up heights and tide records, both of which are possibly biased due to an insufficient number of records and due to hydraulic and mechanical limitation of tide gauges. There are many sources of error. The initial profile, determined with seismic data, can even be different from the actual tsunami profile. The numerical scheme introduces errors. Nonlinearity near and on land requires an appropriate selection of equations. Taking these facts into account, it should be noted that numerical simulations produce satisfactory information for practical use, because the final error is usually within 15% as far as the maximum run-up height is concerned.The state-of-the-art of tsunami numerical simulations is critically summarized from generation to run-up. Problems in the near future are also stated. Fruitful application of computer graphics is suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.