On 25 April 2015, a large earthquake of Mw 7.8 occurred along the Main Himalayan Thrust fault in central Nepal. It was caused by a collision of the Indian Plate beneath the Eurasian Plate. The epicenter was near the Gorkha region, 80 km northwest of Kathmandu, and the rupture propagated toward east from the epicentral region passing through the sediment-filled Kathmandu Valley. This event resulted in over 8000 fatalities, mostly in Kathmandu and the adjacent districts. We succeeded in observing strong ground motions at our four observation sites (one rock site and three sedimentary sites) in the Kathmandu Valley during this devastating earthquake. While the observed peak ground acceleration values were smaller than the predicted ones that were derived from the use of a ground motion prediction equation, the observed peak ground velocity values were slightly larger than the predicted ones. The ground velocities observed at the rock site (KTP) showed a simple velocity pulse, resulting in monotonic-step displacements associated with the permanent tectonic offset. The vertical ground velocities observed at the sedimentary sites had the same pulse motions that were observed at the rock site. In contrast, the horizontal ground velocities as well as accelerations observed at three sedimentary sites showed long duration with conspicuous long-period oscillations, due to the valley response. The horizontal valley response was characterized by large amplification (about 10) and prolonged oscillations. However, the predominant period and envelope shape of their oscillations differed from site to site, indicating a complicated basin structure. Finally, on the basis of the velocity response spectra, we show that the horizontal long-period oscillations on the sedimentary sites had enough destructive power to damage high-rise buildings with natural periods of 3 to 5 s.
We investigated the cause of destructive ground motion during the 2018 Hokkaido eastern Iburi earthquake. We conducted strong motion observations of aftershocks and microtremors and the surface wave method in the damaged areas of the town of Mukawa, Hokkaido prefecture, Japan. The ground accelerations were continuously recorded during a period of approximately 3 months after the main shock on September 6, 2018. The heavily damaged buildings were mainly situated around the strong motion station (HKD126) in Mukawa town. Such concentration of damage can be explained by the strong power that was observed in the 1-2 s period of the response spectrum at this station. We estimated the S-wave velocity profiles of this station site and a temporary station site that was installed on a nearby hill. The estimated S-wave velocity, which was inverted from phase velocity structures with the microtremor array and the surface wave method observations explained the difference in the SH-wave amplification characteristics between the two sites. An analysis of HKD126 and the temporarily observed records clearly indicates the strong effects of the local geological conditions on the heavily damaged area of Mukawa. The strong ground motion power generated during the main shock in Mukawa for 1-2 s period was mainly amplified by this shallow underground velocity structure. which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
The 2015 Gorkha earthquake and its aftershocks caused severe damage mostly in Nepal, while countries around the Himalayan region were warned for decades about large Himalayan earthquakes and the seismic vulnerability of these countries. However, the magnitude of the Gorkha earthquake was smaller than those of historical earthquakes in Nepal, and the most severe damage occurred in the north and northeast of Kathmandu. We explore reasons for these unexpected features by performing a joint source inversion of teleseismic, geodetic, and near-field waveform datasets to investigate the rupture process. Results indicate that the source fault was limited to the northern part of central Nepal and did not reach the Main Frontal Thrust. The zone of large slip was located in the north of Kathmandu, and the fault rupture propagated eastward with an almost constant velocity. Changes in the Coulomb failure function (ΔCFF) due to the Gorkha earthquake were computed, indicating that southern and western regions neighboring the source fault are potential source regions for future earthquakes related to the Gorkha earthquake. These two regions may correspond to the historical earthquakes of 1866 and 1344. Possible future earthquakes in the regions are predicted, and the warning for Himalayan seismic hazards remains high even after the Gorkha earthquake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.