Background Forced air warming systems are used to maintain body temperature during surgery. Benefits of forced air warming have been established, but the possibility that it may disturb the operating room environment and contribute to surgical site contamination is debated. The direction and speed of forced air warming airflow and the influence of laminar airflow in the operating room have not been reported. Methods In one institutional operating room, we examined changes in airflow speed and direction from a lower-body forced air warming device with sterile drapes mimicking abdominal surgery or total knee arthroplasty, and effects of laminar airflow, using a three-dimensional ultrasonic anemometer. Airflow from forced air warming and effects of laminar airflow were visualized using special smoke and laser light. Results Forced air warming caused upward airflow (39 cm/s) in the patient head area and a unidirectional convection flow (9 to 14 cm/s) along the ceiling from head to foot. No convection flows were observed around the sides of the operating table. Downward laminar airflow of approximately 40 cm/s counteracted the upward airflow caused by forced air warming and formed downward airflow at 36 to 45 cm/s. Downward airflows (34 to 56 cm/s) flowing diagonally away from the operating table were detected at operating table height in both sides. Conclusions Airflow caused by forced air warming is well counteracted by downward laminar airflow from the ceiling. Thus it would be less likely to cause surgical field contamination in the presence of sufficient laminar airflow.
Purpose. Surgical lights in the operating rooms are typically installed in a single axis in the center of the room or in two axes on both sides of the operating table. In the single-axis installation, the air-conditioning outlet cannot be placed in the center of the ceiling, which may affect the air current. Therefore, we measured the air current and cleanliness in two equivalent operating rooms using a vertical laminar airflow system equipped with either single-axis or double-axis surgical lights. Methods. Air current was measured using a three-dimensional ultrasonic anemometer. Cleanliness was evaluated by measuring the amount of dust before and after air-conditioner activation. To visualize the air current, smoke was illuminated on a sheet of laser light while the air-conditioning was stopped, and changes after air-conditioning activation were observed. Results. In the single-axis room, an oblique fast air current flowing from the surrounding air outlet toward the center was observed, and the flow velocity fluctuated greatly. In the double-axis room, uniform downward laminar airflow was observed. The amount of dust at the center decreased significantly faster in the double-axis room; thus, the cleanliness at the center was higher in the double-axis room. Persistent stagnation of smoke was observed below the single-axis lighting, whereas smoke below the double-axis lighting was immediately dispersed and the air cleared even when surgical lights were in the position for surgery. Conclusion. Uniform vertical laminar airflow was formed and high cleanliness was achieved in the center of the room when the surgical lights were arranged in two axes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.