The crystal structure of the RNA-binding domain of the small nuclear ribonucleoprotein U1A bound to a 21-nucleotide RNA hairpin has been determined at 1.92 A resolution. The ten-nucleotide RNA loop binds to the surface of the beta-sheet as an open structure, and the AUUGCAC sequence of the loop interacts extensively with the conserved RNP1 and RNP2 motifs and the C-terminal extension of the RNP domain. These interactions include stacking of RNA bases with aromatic side chains of proteins and many direct and water-mediated hydrogen bonds. The structure reveals the stereochemical basis for sequence-specific RNA recognition by the RNP domain.
Galactose oxidase is an extracellular enzyme secreted by the fungus Dactylium dendroides. It is monomeric, with a relative molecular mass of 68,000, catalyses the stereospecific oxidation of a broad range of primary alcohol substrates and possesses a unique mononuclear copper site essential for catalysing a two-electron transfer reaction during the oxidation of primary alcohols to corresponding aldehydes. Recent evidence arguing against a Cu(III)-Cu(I) couple implies the existence of a second redox-active site proposed to involve pyrroloquinoline quinone or a tyrosine radical. We now report the crystal structure of galactose oxidase at 1.7 A resolution. This reveals a unique structural feature at the copper site with a novel thioether bond linking Cys 228 and Tyr 272 in a stacking interaction with Trp 290. We propose that these molecular components stabilize the protein free-radical species essential for catalysis and thus provide a 'built-in' secondary cofactor. This feature may represent a new mechanism for mediating electron transfer in metalloenzymes in the absence of exogenous cofactors.
We investigate a probabilistic cellular automaton model which has been introduced recently. This model describes single-lane traffic flow on a ring and generalizes the asymmetric exclusion process models. We study the equilibrium properties and calculate the so-called fundamental diagrams (flow vs. density) for parallel dynamics. This is done numerically by computer simulations of the model and by means of an improved mean-field approximation which takes into account short-range correlations. For cars with maximum velocity 1 the simplest non-trivial approximation gives the exact result. For higher velocities the analytical results, obtained by iterated application of the approximation scheme, are in excellent agreement with the numerical simulations.
The Arabidopsis homeotic gene AGAMOUS (AG) is necessary for the specification of reproductive organs (stamens and carpels) during the early steps of flower development. AG encodes a transcription factor of the MADS-box family that is expressed in stamen and carpel primordia. At later stages of development, AG is expressed in distinct regions of the reproductive organs. This suggests that AG might function during the maturation of stamens and carpels, as well as in their early development. However, the developmental processes that AG might control during organogenesis and the genes that are regulated by this factor are largely unknown. Here we show that microsporogenesis, the process leading to pollen formation, is induced by AG through activation of the SPOROCYTELESS gene (SPL, also known as NOZZLE,NZZ), a regulator of sporogenesis. Furthermore, we demonstrate that SPL can induce microsporogenesis in the absence of AG function, suggesting that AG controls a specific process during organogenesis by activating another regulator that performs a subset of its functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.