Multicellular spheroids of hepatocytes are known to maintain liver functions for a long period. Rat hepatocytes were isolated to form spheroids by rotation culture and immobilized within calcium alginate. Immobilized spheroids had a much higher extent of tyrosine aminotransferase induction, which is one of the liver-specific differentiated functions, than immobilized non-aggregated cells, while the spheroids secreted significantly less prothrombin than non-aggregated cells. Co-culture of hepatocytes and non-parenchymal liver cells in a monolayer enhanced tyrosine aminotransferase induction and suppressed prothrombin secretion, while conditioned medium prepared from non-parenchymal cells greatly stimulated tyrosine aminotransferase induction and suppressed the prothrombin secretion and DNA synthesis in monolayer-cultured hepatocytes. Prothrombin secretion in hepatocytes was subjected to cell-density-dependent regulation. In a similar manner to other growth-related functions, prothrombin secretion was stimulated at low cell density. It has been reported that thrombin activates the zymogen of hepatocyte growth factor activator [Shimomura, T., Kondo, J., Ochiai, M., Naka, D., Miyazawa, K., Morimoto, Y. & Kitamura, N. (1993) J. Biol. Chem. 268, 22,927-22,932]. Therefore, prothrombin secretion could be one of the growth-related functions and involved in wound healing and liver regeneration.
A hierarchial co-culture, in which rat hepatocytes and non-parenchymal liver cells (NPLCs) were separated by a collagen layer and which was designed to mimic the in vivo microenvironment, was carried out with the aim of developing a module for bio-artificial liver support. Compared with a monolayer co-culture and hepatocytes cultured alone in a monolayer, higher urea synthesis activity was maintained for 6 d in the hierarchical co-culture. When a rat hepatoma cell line H4-II-E-C3, which retains the induction of tyrosine aminotransferase (TAT), was co-cultured in a monolayer with NPLCs, dose-dependent stimulation of TAT induction was observed. In a hierarchical co-culture, NPLCs further stimulated TAT induction in H4-II-E-C3 cells. Since peritoneal macrophages could stimulate TAT induction in hepatocytes in both monolayer and hierarchical co-cultures, bone marrow cells, which can proliferate and differentiate into macrophages in vitro, were investigated as a possible substitute for NPLCs. Bone marrow cells isolated from rat femurs were cultivated in the presence of IL-3 and macrophage colony-stimulating factor (M-CSF), and co-cultured with hepatocytes. Urea synthesis and TAT induction of hepatocytes were stimulated in the co-culture. The co-culture of bone marrow and H4-II-E-C3 cells, both of which have proliferation ability in vitro, was also shown to be effective in stimulating liver functions. The hierarchical configuration, in which two cell types can communicate with the soluble factor(s) through a collagen layer, was found to be more effective than a monolayer in long-term co-culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.