1. The aim of the present study was to investigate whether or not pitavastatin ameliorates diabetic nephropathy and if inhibition of the rennin-angiotensin-aldosterone system (RAAS) is associated with any renoprotective effects. Pitavastatin (10mg/ kg/day) and/or spironolactone (100mg/kg/day) were given by gavage for 3weeks to uninephrectomized rats with streptozotocin-induced diabetes. 2. Pitavastatin or spironolactone significantly reduced proteinuria and collagen deposition, and normalized creatinine clearance, serum creatinine levels and blood urea nitrogen concentrations. 3. Reverse transcription polymerase chain reaction analysis showed that the renal expression of collagenI, transforming growth factor-β and monocyte chemoattractant-1 were increased in diabetic rats and reduced by the pitavastatin and/or spironolactone treatment. 4. These agents also decreased angiotensin converting enzyme expression and aldosterone concentrations in the renal homogenate, but had no effect on blood glucose, haemoglobinA(1c) , and plasma total cholesterol, Na(+) , K(+) , aldosterone and NOx levels, or on systolic blood pressure measured by the tail-cuff method. Interestingly, cotreatment with pitavastatin and spironolactone did not result in additional normalization. 5. These results suggest that pitavastatin shows renoprotective effects against diabetic nephropathy mediated in part by inhibition of the renal RAAS, including the suppression of angiotensin-converting enzyme expression and aldosterone production.
Background/Aims: Podocytes injury is involved in the development of diabetic nephropathy. This study was designed to confirm the reno- and podocyte-protective effects of pitavastatin in diabetic rats and clarify its mechanisms. Methods: Wistar rats were divided into 4 treatment groups: control, streptozotocin (STZ; 55 mg/kg)-induced diabetes, STZ with pitavastatin (10 mg/kg/day), and STZ with tempol (1 mmol/l). Results: STZ-induced diabetic rats exhibited increases in urinary protein excretion and plasma creatinine, and a decrease in creatinine clearance. Pitavastatin significantly improved these parameters without reducing cholesterol levels, whereas tempol did not. The treatment with STZ-enhanced renal fibrosis, mesangial proliferation, transforming growth factor (TGF)-β, MCP-1 and suppressed Rho in association with decrement of bone morphogenetic protein (BMP)-7 expression in renal cortex. Moreover, STZ decreased podocyte related factors, podocin and nephrin, and BMP-7 in podocytes. Pitavastatin significantly ameliorated all these indices. On the other hand, improvement by tempol was found only in TGF-β, MCP-1 and histological changes. Conclusion: Pitavastatin exhibited reno- and podocyte-protective effects accompanied by BMP-7 preservation and Rho suppression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.