A Moisture Air Turbine (MAT) cycle is proposed for improving the characteristics of land based gas turbine by injecting atomized water at inlet to compressor. The power boosting mechanism of MAT is understood as composits of those of following existing systems: inlet air cooling system, inter-cooling and steam injection. Experiments using a 15MW class axial flow load compressor have been carried out to reveal that water evaporation in compressor could reduce compressor work in an efficient manner. Moreover, this technology has been demonstrated by means of 130MW class simple cycle gas turbine power plant to show that a small amount of water consumption is sufficient to increase power output. Very efficient evaporation could be achieved provided the size of water droplet is controlled properly. The amount of water consumption is much less than that of conventional inlet air cooling system with cooling tower for heat rejection. Incorporating water droplet evaporation profile into consideration, realistic cycle calculation model has been developed to predict power output with water injection. It has been shown that this technology is economically achievable. It should be stressed that contrary to well known evaporative cooler, MAT cycle could provide power output at a desired value within its capability regardless of ambient humidity condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.