The recent discovery of a hyper metal-poor (HMP) star, whose metallicity Fe/H is smaller than 1/100,000 of the solar ratio, together with one earlier HMP star, has raised a challenging question if these HMP stars are the actual first generation, low mass stars in the Universe. We argue that these HMP stars are the second generation stars being formed from gases which were chemically enriched by the first generation supernovae. The key to this solution is the very unusual abundance patterns of these HMP stars with important similarities and differences. We can reproduce these abundance features with the core-collapse "faint" supernova models which un-1
We report abundance estimates for neutron-capture elements, including lead (Pb), and nucleosynthesis models for their origin, in two carbon-rich, very metal-poor stars, LP 625-44 and LP 706-7. These stars are subgiants whose surface abundances are likely to have been strongly affected by mass transfer from companion AGB stars that have since evolved to white dwarfs. The detections of Pb, which forms the final abundance peak of the s-process, enable a comparison of the abundance patterns from Sr (Z = 38) to Pb (Z = 82) with predictions of AGB models. The derived chemical compositions provide strong constraints on the AGB stellar models, as well as on s-process nucleosynthesis at low metallicity. The present paper reports details of the abundance analysis for 16 neutron-capture elements in LP 625-44, including the effects of hyperfine splitting and isotope shifts of spectral lines for some elements. A Pb abundance is also derived for LP 706-7 by a re-analysis of a previously observed spectrum. We investigate the characteristics of the nucleosynthesis pathway that produces the abundance ratios of these objects using a parametric model of the s-process without adopting any specific stellar model. The neutron exposure τ is estimated to be about 0.7mb −1 , significantly larger than that which best fits solar-system material, but consistent with the values predicted by models of moderately metal-poor AGB stars. This value is strictly limited by the Pb abundance, in addition to those of Sr and Ba. We also find that the observed abundance pattern can be explained by a few recurrent neutron exposures, and that the overlap of the material that is processed in two subsequent exposures is small (the overlap factor r ∼ 0.1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.