Successful treatment of many patients with advanced cancer using antibodies against programmed cell death 1 (PD-1; also known as PDCD1) and its ligand (PD-L1; also known as CD274) has highlighted the critical importance of PD-1/PD-L1-mediated immune escape in cancer development. However, the genetic basis for the immune escape has not been fully elucidated, with the exception of elevated PD-L1 expression by gene amplification and utilization of an ectopic promoter by translocation, as reported in Hodgkin and other B-cell lymphomas, as well as stomach adenocarcinoma. Here we show a unique genetic mechanism of immune escape caused by structural variations (SVs) commonly disrupting the 3' region of the PD-L1 gene. Widely affecting multiple common human cancer types, including adult T-cell leukaemia/lymphoma (27%), diffuse large B-cell lymphoma (8%), and stomach adenocarcinoma (2%), these SVs invariably lead to a marked elevation of aberrant PD-L1 transcripts that are stabilized by truncation of the 3'-untranslated region (UTR). Disruption of the Pd-l1 3'-UTR in mice enables immune evasion of EG7-OVA tumour cells with elevated Pd-l1 expression in vivo, which is effectively inhibited by Pd-1/Pd-l1 blockade, supporting the role of relevant SVs in clonal selection through immune evasion. Our findings not only unmask a novel regulatory mechanism of PD-L1 expression, but also suggest that PD-L1 3'-UTR disruption could serve as a genetic marker to identify cancers that actively evade anti-tumour immunity through PD-L1 overexpression.
Sequencing data have been deposited at the European Genome-Phenome Archive (http://www.ebi.ac.uk/ega/) under accession numbers EGAD00001005193. Somatic mutation calls, including single base substitutions, indels and structural variants, from all 632 samples have been deposited on Mendeley Data with the identifier: http://dx.doi.org/10.17632/b53h2kwpyy.2. Code Availability Detailed method and custom R scripts for the analysis of mutational burden in bronchial epithelium are available in Supplementary Code. Other packages used in the analysis are listed below:
Key Points• TP53 and RAS-pathway mutations predict very poor survival, when seen with CK and MDS/MPNs, respectively. • For patients with mutated TP53 or CK alone, long-term survival could be obtained with stem cell transplantation.Genetic alterations, including mutations and copy-number alterations, are central to the pathogenesis of myelodysplastic syndromes and related diseases (myelodysplasia), but their roles in allogeneic stem cell transplantation have not fully been studied in a large cohort of patients. We enrolled 797 patients who had been diagnosed with myelodysplasia at initial presentation and received transplantation via the Japan Marrow Donor Program. Targeted-capture sequencing was performed to identify mutations in 69 genes, together with copy-number alterations, whose effects on transplantation outcomes were investigated. We identified 1776 mutations and 927 abnormal copy segments among 617 patients (77.4%). In multivariate modeling using Cox proportional-hazards regression, genetic factors explained 30% of the total hazards for overall survival; clinical characteristics accounted for 70% of risk. TP53 and RAS-pathway mutations, together with complex karyotype (CK) as detected by conventional cytogenetics and/or sequencing-based analysis, negatively affected posttransplant survival independently of clinical factors. Regardless of disease subtype, TP53-mutated patients with CK were characterized by unique genetic features and associated with an extremely poor survival with frequent early relapse, whereas outcomes were substantially better in TP53-mutated patients without CK. By contrast, the effects of RAS-pathway mutations depended on disease subtype and were confined to myelodysplastic/myeloproliferative neoplasms (MDS/MPNs). Our results suggest that TP53 and RAS-pathway mutations predicted a dismal prognosis, when associated with CK and MDS/MPNs, respectively. However, for patients with mutated TP53 or CK alone, long-term survival could be obtained with transplantation. Clinical sequencing provides vital information for accurate prognostication in transplantation.
Peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS) is a diagnosis of exclusion, being the most common entity in mature T-cell neoplasms, and its molecular pathogenesis remains significantly understudied. Here, combining whole-exome and targeted-capture sequencing, gene-expression profiling, and immunohistochemical analysis of tumor samples from 133 cases, we have delineated the entire landscape of somatic alterations, and discovered frequently affected driver pathways in PTCL, NOS, with and without a T-follicular helper (TFH) cell phenotype. In addition to previously reported mutational targets, we identified a number of novel recurrently altered genes, such as KMT2C, SETD1B, YTHDF2, and PDCD1. We integrated these genetic drivers using hierarchical clustering and identified a previously undescribed molecular subtype characterized by TP53 and/or CDKN2A mutations and deletions in non-TFH PTCL, NOS. This subtype exhibited different prognosis and unique genetic features associated with extensive chromosomal instability, which preferentially affected molecules involved in immune escape and transcriptional regulation, such as HLA-A/B and IKZF2. Taken together, our findings provide novel insights into the molecular pathogenesis of PTCL, NOS by highlighting their genetic heterogeneity. These results should help to devise a novel molecular classification of PTCLs and to exploit a new therapeutic strategy for this group of aggressive malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.