The chimeric fusion protein AML1-ETO, created by the t(8;21) translocation, recruits histone deacetylase (HDAC) to AML1-dependent promoters, resulting in transcriptional repression of the target genes. We analyzed the transcriptional changes in t(8;21) Kasumi-1 AML cells in response to the HDAC inhibitors, depsipeptide (FK228) and suberoylanilide hydroxamic acid (SAHA), which induced marked growth inhibition and apoptosis. Using cDNA array, annexin A1 (ANXA1) was identified as one of the FK228-induced genes. Induction of ANXA1 mRNA was associated with histone acetylation in ANXA1 promoter and reversal of the HDAC-dependent suppression of C/EBPa by AML1-ETO with direct recruitment of C/EBPa to ANXA1 promoter. This led to increase in the N-terminal cleaved isoform of ANXA1 protein and accumulation of ANXA1 on cell membrane. Neutralization with anti-ANXA1 antibody or gene silencing with ANXA1 siRNA inhibited FK228-induced apoptosis, suggesting that the upregulation of endogenous ANXA1 promotes cell death. FK228-induced ANXA1 expression was associated with massive increase in cell attachment and engulfment of Kasumi-1 cells by human THP-1-derived macrophages, which was completely abrogated with ANXA1 knockdown via siRNA transfection or ANXA1 neutralization. These findings identify a novel mechanism of action of HDAC inhibitors, which induce the expression and externalization of ANXA1 in leukemic cells, which in turn mediates the phagocytic clearance of apoptotic cells by macrophages.
BackgroundReal-time tissue sonoelastography (EG) is a new non-invasive technique that visualizes differences in tissue strain. We evaluated the usefulness of EG in patients with ulcerative colitis (UC) by investigating the association between EG and colonoscopic findings and disease activity.MethodsThirty-seven UC patients undergoing EG and colonoscopy were invited to enroll. EG findings were classified as normal, homogeneous, random, or hard, and colonoscopic findings as normal, mucosal edema and erosion, punched-out ulcer, and extensive mucosal abrasion. Clinical findings were evaluated using clinical activity index (CAI) scores for each patient at colonoscopy.ResultsOn EG, 10 cases were classified as normal, 11 as homogeneous, 6 as random, and 10 as hard. EG findings showed a significant correlation those of colonoscopy (p < 0.001). Seven of 10 (70%) normal-type patients were in the remission phase, while all 6 random-type patients were in the active phase. Among active-phase patients, 4 of 7 (57%) homogeneous-type patients responded to steroid or leukocytapheresis therapy, while 3 of 6 (50%) random-type patients required treatment with cyclosporine. Three of 10 (30%) hard-type patients required colectomy.ConclusionsIn this small series, EG findings reflected colonoscopic findings and correlated with disease activity among patients with UC.
It has been reported that vitamin K2 (menaquinone-4) promoted 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)-induced mineralization and enhanced gamma-carboxyglutamic acid (Gla)-containing osteocalcin accumulation in cultured human osteoblasts. In the present study, we investigated whether menaquinone-4 (MK-4) was metabolized in human osteoblasts to act as a cofactor of gamma-glutamyl carboxylase. Both conversions of MK-4 to MK-4 2,3-epoxide (epoxide) and epoxide to MK-4 were observed in cell extracts of cultured human osteoblasts. The effect of 1,25(OH)2D3 and warfarin on the vitamin K cycle to cultured osteoblasts were examined. With the addition of 1 nM 1,25(OH)2D3 or 25 microM warfarin in cultured osteoblasts, the yield of epoxide from MK-4 increased. However, the conversion of epoxide to MK-4 was strongly inhibited by the addition of warfarin (2.5-25 microM), whereas it was almost not inhibited by 1,25(OH)2D3 (0.1-10 nM). To clarify the mechanism for this phenomenon, a cell-free assay system was studied. Osteoblast microsomes were incubated with 10 microM epoxide in the presence or absence of warfarin and 1,25(OH)2D3. Epoxide reductase, one of the enzymes in the vitamin K cycle was strongly inhibited by warfarin (2.5-25 microM), whereas it was not affected by 1,25(OH)2D3 (0.1-1 nM). Moreover, there was no effect of pretreatment of osteoblasts with 1 nM 1,25(OH)2D3 on the activity of epoxide reductase. However, the activity of epoxidase, that is the gamma-glutamyl carboxylase was induced by the pretreatment of osteoblasts with 1 nM 1,25(OH)2D3. In the present study, it was demonstrated that the vitamin K metabolic cycle functions in human osteoblasts as well as in the liver, the post-translational mechanism, by which 1,25(OH)2D3 caused mineralization in cooperation with vitamin K2 was clarified.
Restriction-modification (R-M) systems are exclusive to unicellular organisms and ubiquitous in the bacterial world. Bacteria use R-M systems as a defense against invasion by foreign DNA. Analysis of the genome sequences of Helicobacter pylori strains 26 695 and J99 identified an extraordinary number of genes with homology to R-M genes in other bacterial species. All H. pylori strains possess their own unique complement of active R-M systems. All of the methylases that have been studied so far were present in all major human population groupings, suggesting that their horizontal acquisition pre-dated the separation of these populations. The two most strongly conserved methylase genes of H. pylori, hpyIM and hpyIIIM, are both preceded by alternative genes that compete for presence at their loci, and furthermore these genes may be associated with H. pylori pathogenicity. Further study should investigate the roles of H. pylori R-M systems.
Background Ovarian endometrioma is a common gynecological disease that is often treated with surgery or hormonal treatment. Ovarian cystectomy, a surgical procedure for ovarian endometrioma, can result in impaired ovarian reserve. Methods We conducted a randomized controlled trial to evaluate the efficacy of hormonal treatment [gonadotropin-releasing hormone agonist (GnRHa) or dienogest (DNG)] for preserving ovarian reserve after cystectomy for ovarian endometrioma. The primary endpoint was the level of serum Anti-Müllerian hormone (AMH) as a marker of ovarian reserve. Results Before and after laparoscopic surgery, 22 patients in the GnRHa group and 27 patients in the DNG group were administered hormonal treatment for a total of 4 months. After 1-year follow-up, >60% of the patients in the DNG group retained over 70% of their pretreatment AMH levels, whereas no patient in the GnRHa group retained their AMH levels after cystectomy (P < 0.01). Interleukin-6 (IL-6) is a key cytokine involved in inflammation. Compared with the GnRHa group, patients in the DNG group had lower IL-6 levels at the end of treatment. Conclusions Our data revealed that DNG is more effective than GnRHa in preserving ovarian reserve after cystectomy of ovarian endometrioma. This is achieved through the reduction of the inflammatory response during the perioperative period and other endometriosis-related inflammatory reactions. Trial registration The registration number of this trial is UMIN-CTR, UMIN000018569, registered 6 August 2015, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000021492, and Japan Registry of Clinical Trials, jRCTs041180140, registered 29 March 2019, https://jrct.niph.go.jp/en-latest-detail/jRCTs041180140. This randomized controlled trial was conducted in accordance with the CONSORT guidelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.