LRG represents a novel serum biomarker for monitoring disease activity during therapy in autoimmune patients, particularly useful in patients with active disease but normal CRP levels.
The eye lens is composed of fibre cells, which develop from the epithelial cells on the anterior surface of the lens. Differentiation into a lens fibre cell is accompanied by changes in cell shape, the expression of crystallins and the degradation of cellular organelles. The loss of organelles is believed to ensure the transparency of the lens, but the molecular mechanism behind this process is not known. Here we show that DLAD ('DNase II-like acid DNase', also called DNase IIbeta) is expressed in human and murine lens cells, and that mice deficient in the DLAD gene are incapable of degrading DNA during lens cell differentiation--the undigested DNA accumulates in the fibre cells. The DLAD-/- mice develop cataracts of the nucleus lentis, and their response to light on electroretinograms is severely reduced. These results indicate that DLAD is responsible for the degradation of nuclear DNA during lens cell differentiation, and that if DNA is left undigested in the lens, it causes cataracts of the nucleus lentis, blocking the light path.
IL-6 is responsible for causing ocular inflammation, and it is, at least partially, due to IL-6-dependent Th17 differentiation. IL-6 may be a target for therapy of refractory endogenous uveitis in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.