A gene encoding embryonic chicken pepsinogen (ECPg), a zymogen of the digestive enzyme pepsin, is expressed specifically in epithelial cells of glands of embryonic stage proventriculus (glandular stomach) under the influence of mesenchyme. We found four GATA and one Sox binding motifs in 1.1 kb of the 5' flanking region of the ECPg gene which are essential to the organ-specific expression of the gene. The expression of cGATA-5 and cSox2 in the proventriculus from day 6 to day 12 of incubation was therefore analyzed. cGATA-5 was more strongly expressed in glandular epithelial cells than in luminal epithelial cells, while cSox2 gene expression was weaker in glandular epithelial cells. Using heterologous recombination explants we also discovered that the expression of cGATA-5 and cSox2 in epithelial cells was affected by mesenchyme when the latter induced ECPg gene expression in epithelial cells. Introduction of expression constructs into epithelial cells by electroporation demonstrated that cGATA-5 upregulated transcription of a reporter luciferase gene via a cis element in the 5' flanking region of the ECPg gene. The gel mobility shift assay revealed that the cGATA-5 protein specifically binds to the GATA binding sites. cSox2 downregulated the activity of luciferase but it was not through the Sox binding motif. These results suggest that cGATA-5 positively regulates transcription of the ECPg gene and is involved in spatial regulation of the pepsinogen gene during development.
We performed tissue recombination experiments to discover the mesenchymal influences on differentiation of epithelia in chicken digestive organs. Epithelia and mesenchymes were taken from the lung, esophagus, proventriculus, gizzard, small intestine and large intestine of 6-day chicken embryos and recombined in various associations and cultivated in vitro for 6 days. Rather unexpectedly, embryonic chicken pepsinogen (ECPg) gene, a marker of the proventricular epithelium, was induced in the gizzard epithelium, which does not express ECPg in normal development, by the proventricular and lung mesenchymes. In the second half of this study, we investigated the mode of action of mesenchymal cells on ECPg expression in gizzard epithelial cells more precisely using the cell aggregate culture system, in which gizzard epithelial cells were mixed with proventricular, gizzard or lung mesenchymal cells. We found that supporting action of lung mesenchymal cells on ECPg expression was even stronger than that of proventricular mesenchymal cells, and suggest that the action of lung mesenchyme may be due partly to the enhancement of epithelial cell proliferation. According to the results of this study, together with many facts obtained so far, we will discuss a new model for restricted expression of ECPg in the proventricular epithelium in normal development.
Epithelial-mesenchymal interactions are very important in the development of the vertebrate gut. In the avian embryonic stomach (proventriculus), expression of embryonic chick pepsinogen (ECPg) gene, which is specific to developing glandular cells in stomach epithelium, is regulated by mesenchymal influence. Molecular mechanisms of tissue-specific transcriptional regulation of the ECPg gene and the molecular nature of the mesenchymal signals were analyzed using a combination of the classic organ culture system and gene transfer strategies. In the present review, three methods for the introduction of DNA into tissues are described: lipofection, electroporation and retroviral infection, and characteristics of each system are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.