Functionally gradient materials (FGMs) display continuously or discontinuously varying compositions and/or microstructures over definable geometrical distances. The gradients can be continuous on a microscopic level, or they can be laminates comprised of gradients of metals, ceramics, polymers, or variations of porosity/density. Several processing techniques have been explored for the fabrication of FGMs for structural applications, e.g., powder metallurgy, thermal spraying, in situ synthesis, self-propagating high-temperature synthesis, reactive infiltration, etc. Physical and chemical vapor deposition (CVD) techniques are also being explored to process FGM films with nanometer level gradients in composition. This article addresses the issues related to thermal-spray processing of FGMs and will only peripherally compare the advantages and limitations of thermal spray versus other processing techniques as reported in the literature.In thermal spraying, feedstock material (in the form of powder, rod, or wire) is introduced into a combustion or plasma flame. The particles melt in transit and impinge on the substrate where they flatten, undergo rapid solidification, and form a deposit through successive impingement. Thermal spraying has been traditionally employed to produce a variety of protective coatings of ceramics, metals, and polymers on a range of substrates. More recently, the process has been used for spray-forming structural components.Arc spray, combustion, and plasma are the major techniques comprising thermal spray. These classifications are based on the type of heat source and the method by which feedstock is injected. Arc-spray processes use electrically conductive wire as feedstock, while combustion methods use powder or wire.
Neutron diffraction study on La2CuO4, which is the basic material of high-T c oxide superconductors, revealed the antiferromagnetic ordering in this compound. The value of the magnetic moment is 1.1±0.3 µB per copper atom, and the Néel temperature was found to be 240±10 K from temperature dependence of the intensity of the magnetic reflection.
Low Pressure Plasma Spraying (LPPS) is a promising coating method for Functionally Graded Material (FGM) expected to be able to reduce the thermal stress in high temperature environments such as a gas turbine. In this paper, we report the effect of the composition profile and coating density of LPPS sprayed FGM, consisting of ZrO 2-8 wt%Y 2 O 3 (YSZ) top coating, YSZ-Ni-20 wt%Cr (NiCr) FGM coating, NiCr under coating and copper substrate, on the thermal shock resistance evaluated by a modified temperature difference test. The density of YSZ and NiCr coating was successfully controlled by the chamber pressure and initial particle size in the range from 5.43 to 5.79 g/cm 3 and from 7.89 to 8.09 g/cm 3 , respectively. For an YSZ composition profile from NiCr under coating to YSZ top coating (in FGM), the highest thermal shock resistance was obtained when the fraction of YSZ increased with gentle slope just over NiCr coating and acute slope just under YSZ coating. Also, the higher density coatings tended to perform the higher thermal shock resistance. Initial cracks formed in the YSZ top coating propagated into YSZ parts in FGM coating through the grain boundary of YSZ and/or the interface between flattened NiCr and YSZ particles. After the cracks connected, the coupled cracks caused the coating spallation.
An exact solution of a heat conduction problem with the effect of latent heat of solidification (Stefan problem) is derived. The solution of the one dimensional Stefan problem for a finite liquid phase initially existing in a semi-infinite body is applied to evaluate temperature fields produced by laser or electron beam welding. The solution of the model has not been available before, as Carslaw and Jaeger [Conduction of Heat in Solids, 2nd ed. (Oxford University Press, New York, 1959)] pointed out. The heat conduction calculations are performed using thermal properties of carbon steel, and the comparison of the Stefan problem with a simplified linear heat conduction model reveals that the solidification rate and cooling curve over 1273 K significantly depend on which model (Stefan or linear heat conduction problem) is applied, and that the type of the thermal model applied has little meaning for cooling curve below 1273 K. Since the heat conduction problems with a phase change arise in many important industrial fields, the solution derived in this study is ready to be used not only for welding but also for other industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.