Zwitterionic monolithic columns were synthesized by a one-pot reaction using [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide, ethylene dimethacrylate, methanol and 2,2′-azobis(isobutyronitrile) as the monomer, cross-linker, porogen and initiator, respectively. The optimum conditions for polymerization and the efficiency of the prepared columns were examined for ion chromatography. The separation of five kinds of inorganic anions was achieved. The back pressures were monitored as increasing flow-rate, and the resulting plate heights (i.e. height equivalent of a theoretical plate, HETP) of SCN -were calculated at the inspected flow-rates. It was found that the increment rates of both the back pressure and HETP were rather slight. Mobile phases containing various cations or acid increased the retention times of the anions. Divalent cations could be separated, while monovalent cations could not be resolved due to their weak retention on the stationary phases.
Osmium is defined in the international council for harmonization (ICH-Q3D) guidelines as an element whose concentration can be determined by validated methods including microwave-assisted nitric acid digestion and inductively coupled plasma mass spectrometry. However, microwave digestion using nitric acid is known to result in osmium recoveries higher than the theoretical values in spiked tests because of the formation of highly volatile osmium tetroxide in an oxidation reaction. To stabilize osmium, the addition of thiourea as a complexing agent has been tested and proved its utility. It remains unclear whether other compounds can prevent the over-recovery of osmium. In this study, we investigated four compounds, thiourea, ascorbic acid, sodium sulfite, and potassium metabisulfite, that could reduce the overestimation of osmium isotopes. The minimum amounts of thiourea, ascorbic acid, sodium sulfite, and potassium metabisulfite required to stabilize 10 ng/mL osmium in blank matrix were 1.0, 1.0, 2.5, and 2.5 g/L, respectively. The relative standard deviations obtained from 12 analyses for each stabilization solution were less than 3.3% in thiourea, 12.7% in ascorbic acid, 9.0% in sodium sulfite, and 10.6% in potassium metabisulfite. The stabilization solutions were investigated in a digested tablet matrix and were found to be effective. The impact of adding stabilization solutions on the determination of all ICH-Q3D element concentrations was also evaluated. As stabilization solutions had a small or significant impact on the determination of some elements, it was concluded that osmium determination should be conducted independently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.