Liquid crystals (LCs) are easily influenced by external interactions, particularly at interfaces. When rod-like LC molecules are confined to spherical droplets, they experience a competition between interfacial tension and elastic deformations. The configuration of LCs inside a droplet can be controlled using surfactants that influence the interfacial orientation of the LC molecules in the oil-phase of an oil in water emulsion. Here, we used the surfactant sodium dodecyl sulfate (SDS) to manipulate the orientation of 5CB molecules in a polydisperse emulsion and examined the configuration of the droplets as a function of SDS concentration. We triggered pronounced morphological transitions by altering the SDS concentration while observing an individual LC droplet held in place using an optical tweezer. We compared the experimental configuration changes to predictions from simulations. We observed a hysteresis in the SDS concentration that induced the morphological transition from radial to bipolar and back as well as a fluctuations in the configuration during the transition.
AC electric fields cause three-dimensional orientational fluctuations (solitons) to form and rapidly propagate in confined films of liquid crystals (LCs), offering the basis of a new class of active soft matter (e.g., for accelerating mixing and transport processes in microscale chemical systems). How surface chemistry impacts the formation and trajectories of solitons, however, is not understood. Here, we show that self-assembled monolayers (SAMs) formed from alkanethiols on gold, which permit precise control over surface chemistry, are electrochemically stable over voltage and frequency windows (<100 V; 1 kHz) that lead to soliton formation in achiral nematic films of 4′-butyl-4-heptyl-bicyclohexyl-4-carbonitrile (CCN-47). By comparing soliton formation in LC films confined by SAMs formed from hexadecanethiol (C 16 SH) or pentadecanethiol (C 15 SH), we reveal that the electric field required for soliton formation increases with the LC anchoring energy: surfaces patterned with regions of C 16 SH and C 15 SH SAMs thus permit spatially controlled creation and annihilation of solitons necessary to generate a net flux of solitons. We also show that solitons propagate in orthogonal directions when confined by obliquely deposited gold films decorated with SAMs formed from C 16 SH or C 15 SH and that the azimuthal direction of propagation of solitons within achiral LC films possessing surfaceinduced twists is not unique but reflects variation in the spatial location of the solitons across the thickness of the twisted LC film. Finally, discontinuous changes in LC orientation induced by patterned surface anchoring lead to a range of new soliton behaviors including refraction, reflection, and splitting of solitons at the domain boundaries. Overall, our results provide new approaches for the controlled generation and programming of solitons with complex and precise trajectories, principles that inform new designs of chemical soft matter.
We modeled the experimentally observed self-assembly of nanoparticles (NPs) into shells with diameters up to 10 μm, via segregation from growing nematic domains. Using field-based Monte Carlo simulations, we found the equilibrium configurations of the system by minimizing a free-energy functional that includes effects of excluded-volume interactions among NPs, orientational elasticity, and the isotropic-nematic phase-transition energy. We developed a Gaussian-profile approximation for the liquid crystal (LC) order-parameter field that provides accurate analytical values for the free energy of LC droplets and the associated microshells. This analytical model reveals a first-order transition between equilibrium states with and without microshells, governed mainly by the competition of excluded-volume and phase-transition energies. By contrast, the LC elasticity effects are much smaller and mostly confined to setting the size of the activation barrier for the transition. In conclusion, field-based thermodynamic methods provide a theoretical framework for the self-assembly of NP shells in liquid crystal hosts and suggest that field-based kinetic methods could be useful to simulate and model the time evolution of NP self-assembly coupled to phase separation.
Solitons in liquid crystals have generated considerable interest. Several hypotheses of varying complexity have been advanced to explain how they emerge, and a consensus has not emerged yet about the underlying forces responsible for their formation or their structure. In this work, we present a minimal model for soliton structures in achiral nematic liquid crystals, which reveals the key requirements needed to generate traveling solitons in the absence of added charges. These include a surface imperfection or inhomogeneity capable of producing a twist, flexoelectricity, dielectric contrast, and an applied AC electric field that can couple to the director's orientation. Our proposed model is based on a tensorial representation of a confined liquid crystal, and it predicts the formation of "butterfly" structures, quadrupolar in character, in regions of a slit channel where the director is twisted by the surface imperfection. As the applied electric field is increased, solitons (or "bullets") become detached from the wings of the butterfly, which then rapidly propagate throughout the system. The main observations that emerge from the model, including the formation and structure of butterflies, bullets, and stripes, as well as the role of surface imperfections and the strength of the applied field, are consistent with our own experimental findings presented here for nematic LCs confined between two chemically treated parallel plates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.