Background: Malaria, filariasis, and intestinal parasitic infections (IPIs) are common and frequently overlap in developing countries. The prevalence and predictors of these infections were investigated in three different settlements (rural, semi-urban, and urban) of Gabon.
We assessed Plasmodium (P.) falciparum allelic diversity based on clinical severity and age. The study was conducted from 2011 to 2012 in Libreville, Gabon where malaria prevalence was 24.5%. The polymorphism of the merozoite surface protein-1 (msp1) locus was analyzed in isolates from patients with complicated and uncomplicated malaria. Blood was collected on filter paper. After DNA extraction, genotyping of the msp1 gene was performed using nested PCR. The K1, Ro33, and Mad20 allelic families were detected in 71 (63%), 64 (57%), and 38 (34%) of the 112 analyzed samples, respectively. Overall, 17 K1 and 11 Mad20 alleles were detected. There was no association between msp1 allelic families and age. Mad20 allelic diversity increased with the severity of malaria. The number of K1 and Mad20 alleles decreased with age. The multiplicity of infection (MOI) was 1–6 genotypes and the complexity of infection (COI) 1.8 ± 1. The COI differed based on age: it was 1.9 (±1.1) in the isolates from adults, 1.8 (±1.1) in those from 0–5 year-old children, whereas it tended to be lower (1.6 ± 0.8) in those from 6–15 year-old children. Extensive genetic diversity is found in P. falciparum strains circulating in Libreville. The number of specific msp1 alleles increased with clinical severity, suggesting an association between the diversity and the severity of malaria.
The present study determined and compared the genetic diversity of Plasmodium falciparum strains infecting children living in 2 areas from Gabon with different malaria endemicity. Blood samples were collected from febrile children from 2008 to 2009 in 2 health centres from rural (Oyem) and urban (Owendo) areas. Genetic diversity was determined in P. falciparum isolates by analyzing the merozoite surface protein-1 (msp1) gene polymorphism using nested-PCR. Overall, 168 children with mild falciparum malaria were included. K1, Ro33, and Mad20 alleles were found in 110 (65.5%), 94 (55.9%), and 35 (20.8%) isolates, respectively, without difference according to the site (P>0.05). Allelic families’ frequencies were comparable between children less than 5 years old from the 2 sites; while among the older children the proportions of Ro33 and Mad20 alleles were 1.7 to 2.0 fold higher at Oyem. Thirty-three different alleles were detected, 16 (48.5%) were common to both sites, and 10 out of the 17 specific alleles were found at Oyem. Furthermore, multiple infection carriers were frequent at Oyem (57.7% vs 42.2% at Owendo; P=0.04) where the complexity of infection was of 1.88 (±0.95) higher compared to that found at Owendo (1.55±0.75). Extended genetic diversity of P. falciparum strains infecting Gabonese symptomatic children and high multiplicity of infections were observed in rural area. Alleles common to the 2 sites were frequent; the site-specific alleles predominated in the rural area. Such distribution of the alleles should be taken into accounts when designing MSP1 or MSP2 malaria vaccine.
In Gabon, sulfadoxine-pyrimethamine (SP) is recommended for intermittent preventive treatment during pregnancy (IPTp-SP) and for uncomplicated malaria treatment through ACTs drug. P. falciparum strains resistant to SP are frequent in areas where this drug is highly used and is associated with the occurrence of mutations on Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthetase (Pfdhps) genes. The aim of the study was to compare the proportion of mutations on Pfdhfr and Pfdhps genes in isolates collected at Oyem in northern Gabon, in 2005 at the time of IPTp-SP introduction and three years later. Point mutations were analyzed by nested PCR-RFLP method. Among 91 isolates, more than 90% carried Pfdhfr 108N and Pfdhfr 59R alleles. Frequencies of Pfdhfr 51I (98%) and Pfdhps 437G (67.7%) mutant alleles were higher in 2008. Mutations at codons 164, 540, and 581 were not detected. The proportion of the triple Pfdhfr mutation and quadruple mutation including A437G was high: 91.9% in 2008 and 64.8% in 2008, respectively. The present study highlights an elevated frequency of Pfdhfr and Pfdhps mutant alleles, although quintuple mutations were not found in north Gabon. These data suggest the need of a continuous monitoring of SP resistance in Gabon.
Background: Patients with acute febrile illness need to be screened for malaria and coronavirus disease 2019 (COVID-19) in malaria-endemic areas to reduce malaria mortality rates and to prevent the transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).Objectives: To estimate the frequency of children and adolescents with COVID-19 and/or malaria among febrile patients attending for malaria diagnosisMethod: This cross-sectional study was conducted in a sentinel site for malaria surveillance during the SARS-CoV-2 pandemic (Omicron variant), from October 2021 to December 2021 in Gabon. All febrile patients were tested for malaria using microscopy. Severe acute respiratory syndrome coronavirus 2 was detected by real time polymerase chain reaction (RT-PCR) and rapid antigen tests developed by Sansure Biotech®.Results: A total of 135 patients were screened. Their median age was 6 (interquartile range [IQR]: 3–14) years. Malaria was confirmed for 49 (36.3%) patients, 29 (32.5%) children, 13 (59.0%) adolescents and 7 (29.2%) adults. The frequency of COVID-19 cases was 7.4% (n = 10/135), and it was comparable between children (n = 6; 6.7%), adolescents (n = 2; 9.1%) and adults (n = 2; 8.3%) (p = 0.17). Malaria and COVID-19 co-infections were diagnosed in 3 (6.1%) patients from all the age groups. Participants with a co-infection had a higher median temperature, a higher median parasitaemia, and were mostly infected with non-falciparum malaria.Conclusion: COVID-19 cases and cases of malaria/COVID-19 co-infections were found in febrile children and adolescents. SARS-CoV-2 testing should be included in the screening of suspected malaria cases.Contribution: This study highlights the presence of malaria-COVID-19 coinfection among children and adolescents who should also be screened for both diseases, like for adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.