The umuDC operons of Escherichia coli and Salmonella typhimurium and the analogous plasmid operons mucAB and impCAB have been previously characterized in terms of their roles in DNA repair and induced mutagenesis by radiation and many chemicals. The interrelationships of these mutagenic DNA repair operons were examined in vivo in functional tests of interchangeability of operon subunits in conferring UV resistance and UV mutability phenotypes to wild-type S. typhimurium and umu mutants of E. coli. This approach was combined with DNA and protein sequence comparisons between the four operons and a fifth operon, samAB, from the S. typhimurium LT2 cryptic plasmid. Components of the E. coli and S. typhimurium umu operons were reciprocally interchangeable whereas impCA and mucA could not function with umuC in either of these species. mucA and impB could also combine to give a mutagenic response to UV. These active combinations were associated with higher degrees of conservation of protein sequence than in other heterologous gene combinations and related to specific regions of sequence that may specify subunit interactions. The dominance of the E. coli umuD44 mutation over umuD was revealed in both wild-type E. coli and S. typhimurium and also demonstrated against impCAB. Finally interspecies transfer showed that the apparently poor activity of the S. typhimurium umuD gene in situ is not the result of an inherent defect in umuD but is due to the simultaneous presence of the S. typhimurium umuC sequence. It is suggested that the limitation of umuD activity by umuC in S. typhimurium is the basis of the poor induced mutability of this organism.
We have used the lacZ reversion assay to study the mutation spectra induced by the Escherichia coli chromosomal umuDC operon and of its two plasmid-borne analogues impCAB and mucAB following exposure of cells to UV light and methyl methanesulfonate (MMS). We have shown that the impCAB, mucAB and umuDC operons all produce a similar response to UV light which results almost exclusively in AT-->GC transitions. However, we found that the three operons produced different responses to alkylating agents. We found that with MMS the chromosomal umuDC operon produced almost exclusively AT-->GC transitions, whilst both mucAB and impCAB produced predominantly transversions. In the case of the impCAB operon the mutation spectrum contained more AT-->TA than GC-->TA transversions; this balance was reversed with mucAB. The effect of the copy number of the error-prone DNA repair operons upon the mutagenic spectra was also studied. The results obtained suggest that the copy number of the imp operon does not greatly affect the specificity of base substitutions observed. However, an increase in the copy number of the umuDC operon greatly affected the specificity of base substitution, such that virtually no transitions were produced and the spectrum was dominated by GC/AT-->TA transversions. It appears that the three error-prone DNA repair operons impCAB, mucAB and umuDC, despite showing strong structural and functional homologies, can display major differences in the spectrum of base changes induced during mutagenesis.(ABSTRACT TRUNCATED AT 250 WORDS)
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.