Composites of ethylene‐vinyl acetate (EVA) reinforced with graphene platelets are fabricated. Morphological, thermal, mechanical, electrical properties as well as moisture absorption of the composites are characterized. Transmission electron microscopy shows a good dispersion of graphene platelets in the matrix. The unidirectional orientation of graphene platelets parallel to the surface of the composites is revealed by field emission scanning electron microscopy and is validated using the Halpin–Tsai model. Tensile strength and elongation of the composites are respectively improved by 109 and 83%, after the addition of 3 wt% graphene platelets. The incorporation of 5 wt% graphene platelets enhances the char residue of the composites from 0.544% for pure EVA to 6.63% for the composites. The electrical conductivity of the composite with 3 wt% graphene platelets is two orders of magnitude higher than that of pure EVA with 10−13 S cm–1 electrical conductivity.
Mechanical properties of poly(e-caprolactone) (PCL) and polylactic acid (PLA) blend reinforced with Dura and Tenera palm press fibers were studied. Dicumyl peroxide (DCP) was used as compatibilizer in the blend composites. Fourier transforms infrared spectrophotometer (FTIR) and field emission scanning electron microscope (FESEM) was used to study the effect of treatment on the fibers and fiber/matrix adhesion respectively. The uncompatibilized blend composites exhibited higher Young's modulus than the compatibilized blend composites. Impact strength of compatibilized blend composites of Tenera fibers (FM) increased by 161% at 10 wt% fiber load more than the uncompatibilized blend composites at same fiber load. The Dura fibers (FN) enhanced impact strength by 133% at 10 wt% fiber load. Tensile strength increased by 40% for compatibilized FM blend composites. In conclusion, it was observed that DCP incorporation resulted in good interfacial adhesion as revealed by the FESEM micrographs and evidenced in the improved mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.