Vasodilators are used clinically for the treatment of hypertension and heart failure. The effects of some vasodilators seem to be mediated by membrane hyperpolarization. The molecular basis of this hyperpolarization has been investigated by examining the properties of single K+ channels in arterial smooth muscle cells. The presence of adenosine triphosphate (ATP)-sensitive K+ channels in these cells was demonstrated at the single channel level. These channels were opened by the hyperpolarizing vasodilator cromakalim and inhibited by the ATP-sensitive K+ channel blocker glibenclamide. Furthermore, in arterial rings the vasorelaxing actions of the drugs diazoxide, cromakalim, and pinacidil and the hyperpolarizing actions of vasoactive intestinal polypeptide and acetylcholine were blocked by inhibitors of the ATP-sensitive K+ channels, suggesting that all these agents may act through a common pathway in smooth muscle by opening ATP-sensitive K+ channels.
1. We describe the effects on channel function of changing an aspartate residue (Asp172) in a membrane‐spanning alpha‐helix of the murine inward rectifier, IRK1, by site‐directed mutagenesis. 2. Alteration of Asp172 to Glu (charged) or to Gln or Asn (polar but uncharged) produced functional channels showing inward rectification, though rectification was weaker with Gln and Asn. 3. Intrinsic gating around the potassium equilibrium potential, EK, was conserved only if the charge on residue 172 was conserved. Currents through channels with Gln or Asn in this position showed no time dependence under hyperpolarization. 4. The change from Asp to Gln also reduced the affinity for internal Mg2+ at least fivefold, indicating that Asp172 also forms part of the site for Mg2+ blockage. 5. The consequences for channel structure of Asp172 lining the pore are discussed.
Unitary currents were recorded from inside-out membrane patches pulled from Xenopus oocytes that had been injected with RNA transcribed from a cDNA encoding the Drosophila maxi-K channel (Slowpoke). Site-directed mutagenesis was used to make cDNAs encoding channel subunits with single amino acid substitutions (Y308V and C309P). The extracellular side of the patch was exposed to tetraethylammonium (TEA) in the pipette solution; unitary currents in the presence of TEA were compared with currents in the absence of TEA to compute the inhibition. Amplitude distributions were fit by beta functions to estimate the blocking and unblocking rate constants. For wild-type channels, TEA blocked with an apparent Kd of 80 microM at 0 mV and sensed 0.18 of the membrane electric field; the voltage dependence lay entirely in the blocking rate constant. TEA blocked currents through C309P channels with a similar affinity to wild-type at 0 mV, but this was not voltage-dependent. Currents through Y308V channels were very insensitive to any block by TEA; the apparent Kd at 0 mV was 26 mM and the blockade sensed 0.18 of the electric field. Oocytes injected with a mixture of RNAs encoding wild-type and Y308V channels showed unitary currents of four discrete amplitudes in the presence of 3 mM TEA; at 40 mV these corresponded to inhibitions of approximately 80%, 55%, 25% and 10%.(ABSTRACT TRUNCATED AT 250 WORDS)
We used whole‐cell patch clamp to investigate steady‐state activation of ATP‐sensitive K+ channels (KATP) of rat arterial smooth muscle by protein kinase A (PKA) and the pathway by which angiotensin II (Ang II) inhibits these channels.
Rp‐cAMPS, an inhibitor of PKA, did not affect KATP currents activated by pinacidil when the intracellular solution contained 0.1 mM ATP. However, when ATP was increased to 1.0 mM, inhibition of PKA reduced KATP current, while the phosphatase inhibitor calyculin A caused a small increase in current.
Ang II (100 nM) inhibited KATP current activated by the K+ channel opener pinacidil. The degree of inhibition was greater with 1.0 mM than with 0.1 mM intracellular ATP. The effect of Ang II was abolished by the AT1 receptor antagonist losartan.
The inhibition of KATP currents by Ang II was abolished by a combination of PKA inhibitor peptide 5‐24 (5 μM) and PKC inhibitor peptide 19‐27 (100 μM), while either alone caused only partial block of the effect.
In the presence of PKA inhibitor peptide, the inhibitory effect of Ang II was unaffected by the PKC inhibitor Gö 6976, which is selective for Ca2+‐dependent isoforms of PKC, but was abolished by a selective peptide inhibitor of the translocation of the ε isoform of PKC.
Our results indicate that KATP channels are activated by steady‐state phosphorylation by PKA at normal intracellular ATP levels, and that Ang II inhibits the channels both through activation of PKCε and inhibition of PKA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.