Acquiring high-quality origin-destination (OD) information for traffic in a geographic area is both time consuming and expensive while using conventional methods such as household surveys or roadside monitoring. These methods generally present only a snapshot of traffic situation at a certain point in time, and they are updated in time intervals of up to several years. A technique was developed that makes use of the global system for mobile communications (GSM) mobile phone network. Instead of monitoring the flow of vehicles in a transportation network, the flow of mobile phones in a cell-phone network is measured and correlated to traffic flow. This methodology is based on the fact that a mobile phone moving on a specific route always tends to change the base station nearly at the same position. For a first pilot study, a GSM network simulator has been designed, where network data can be simulated, which is then extracted from the phone network, correlated, processed mathematically and converted into an OD matrix. Primary results show that the method has great potential, and the results inferred are much more cost-effective than those generated with traditional techniques. This is due to the fact that no change has to be made in the GSM network, because the information that is needed can readily be extracted from the base station database, that is the entire infrastructure needed is already in place.
The origin-destination matrix is an important source of information describing transport demand in a region. Most commonly used methods for matrix estimation use link volumes collected on a subset of links in order to update an existing matrix. Traditional volume data collection methods have significant shortcomings because of the high costs involved and the fact that detectors only provide status information at specified locations in the network. Better matrix estimates can be obtained when information is available about the overall distribution of traffic through time and space. Other existing technologies are not used in matrix estimation methods because they collect volume data aggregated on groups of links, rather than on single links. That is the case of mobile systems. Mobile phones sometimes cannot provide location accuracy for estimating flows on single links but do so on groups of links; in contrast, data can be acquired over a wider coverage without additional costs. This paper presents a methodology adapted to the concept of volume aggregated on groups of links in order to use any available volume data source in traditional matrix estimation methodologies. To calculate volume data, we have used a model that has had promising results in transforming phone call data into traffic movement data. The proposed methodology using vehicle volumes obtained by such a model is applied over a large real network as a case study. The experimental results reveal the efficiency and consistency of the solution proposed, making the alternative attractive for practical applications. MAE, mean absolute error; MARE, mean absolute relative error; MedARE, median absolute relative error. 662 N. CACERES ET AL.Figure 4. Correlation between observed and modelled aggregate volumes of groups of links crossing inter-cell boundaries by assigning (a) the prior O-D matrix and (b) the adjusted one. 664 N. CACERES ET AL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.