As known, ILs also show an interesting potential to be used in separation processes and extraction media. Therefore, the knowledge of the mutual solubilities of molecular solvents and ILs prior to their industrial applications is also of primary importance. Moreover, many factors that control the phase behavior of these ionic salts with molecular solvents may be described from the phase equilibrium data.However, as the number of possible ILs is enormous, this cannot be accomplished via experimental determination. Thus, it is very important to obtain models or empirical equations able to describe satisfactorily the experimental data.In this chapter, a revision of the different equations applied for the modeling of physical properties of pure ILs and their mixtures, and phase equilibria of binary and ternary mixtures containing ILs, is presented and discussed. Future trends regarding the use of new models, namely equations of state accounting for association effects, are also focused. . Physical properties . . Pure ionic liquidsSince ILs are relatively new compounds, experimental data on physical properties, such as density, viscosity, or refractive index of pure ILs and its mixtures with other solvents are required for the design of different equipment and processing units and very useful for developing accurate theoretical models.Due to innumerable number of ILs that can be synthesized, experimental measurements are impractical for selection of a suitable IL for a specific application. Therefore, development of correlations and theoretical approaches allowing accurate modeling of IL-based systems is essential. This section shows the most common empirical equations used to correlate the temperature dependence of some of the physical properties of ILs.For pure ILs, temperature dependence of physical properties such as density, speed of sound, or refractive index is very important for the successful and large-scale use of these compounds. Usually, this dependence is described using simple polynomial expressions, mainly equations of first, second and third order [ -].Several papers were also published concerning the experimental densities of pure ILs as a function of temperature and pressure [ -]. The Tait equation [ ] with four adjustable parameters is commonly used to fit these experimental data [ , ]. This equation is an integrated form of an empirical equation representative of the isothermal compressibility behavior versus pressure, and it can be expressed as
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.