The use of a voltammetric electronic tongue for the quantitative analysis of quality parameters in spring water is proposed here. The electronic voltammetric tongue consisted of a set of four noble electrodes (iridium, rhodium, platinum, and gold) housed inside a stainless steel cylinder. These noble metals have a high durability and are not demanding for maintenance, features required for the development of future automated equipment. A pulse voltammetry study was conducted in 83 spring water samples to determine concentrations of nitrate (range: 6.9–115 mg/L), sulfate (32–472 mg/L), fluoride (0.08–0.26 mg/L), chloride (17–190 mg/L), and sodium (11–94 mg/L) as well as pH (7.3–7.8). These parameters were also determined by routine analytical methods in spring water samples. A partial least squares (PLS) analysis was run to obtain a model to predict these parameter. Orthogonal signal correction (OSC) was applied in the preprocessing step. Calibration (67%) and validation (33%) sets were selected randomly. The electronic tongue showed good predictive power to determine the concentrations of nitrate, sulfate, chloride, and sodium as well as pH and displayed a lower R2 and slope in the validation set for fluoride. Nitrate and fluoride concentrations were estimated with errors lower than 15%, whereas chloride, sulfate, and sodium concentrations as well as pH were estimated with errors below 10%.
The use of a voltammetric electronic tongue for the quantitative analysis of quality parameters in influent wastewater from a wastewater treatment plant (WWTP) that treats domestic and industrial wastewater is proposed. The electronic voltammetric tongue consists of a set of four noble electrodes (iridium, rhodium, platinum and gold) housed inside a stainless steel cylinder. These noble metals have high durability and are low maintenance‐demanding, as required for developing future automated equipment. A pulse voltammetry study was conducted in 35 wastewater samples to determine ammonia (NH4+‐N), nitrates (NO3−‐N), total phosphate (tot‐P), soluble chemical oxygen demand (CODs) and conductivity. These parameters were also determined in these samples by routine analytical methods in the WWTP laboratory. A partial least squares (PLS) analysis was run to obtain a model to predict each parameter. Twenty‐five samples were included in the calibration set and 10 in the validation set. Calibration and validation sets were selected randomly, except for the extreme values of each parameter, which were included in the calibration set. Variable selection was performed on the voltammetric data using Genetic Algorithms in the calibration data set for each parameter. The electronic tongue showed good predictive power to determine the concentrations of NH4+‐N, NO3−‐N and tot‐P and CODs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.