The reactivity of cobalt(II) salts towards H(3)L (2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) was studied in different reaction conditions. Accordingly, the interaction of cobalt(II) acetate with H(3)L in methanol gives rise to the discrete complex [Co(III)(2)L(OAc)(2)(OMe)]*1.5H(2)O.MeOH, 1. Reaction of cobalt(II) acetylacetonate with H(3)L in the presence of dicarboxylic acids was also investigated. Thus, when cobalt(II) acetylacetonate and H(3)L are mixed with terephthalic or malonic acid in 4 : 2 : 1 molar ratios, the mixed valent [Co(II/III)(2)L(acac)(p-O(2)CC(6)H(4)CO(2)H)][Co(II/III)(2)L(acac)(OH)]*2H(2)O*2MeOH, 2 and [Co(II/III)(2)L(acac)(O(2)CCH(2)CO(2)H)][Co(II/III)(2)L(acac)(OH)]*7H(2)O, complexes are isolated. Decreasing the pH of the medium, by addition of a second mol of dicarboxylic acid, leads to [Co(II/III)(2)L(O(2)CCH(2)CO(2))(MeOH)]*2MeOH, 4, while the reaction with terephthalic acid does not proceed. 1, 2 and 4 were crystallographically characterised and all the complexes are dinuclear, with hydrogen bonds that expand the initial nodes. The magnetic characterisation, as well as the NMR spectroscopy, indicates a diamagnetic nature for 1, in agreement with the presence of Co(III), showing the aerial oxidation suffered by the cobalt(II) ions. Nevertheless, are paramagnetic. Temperature variable magnetic measurements were recorded for the crystallographically characterised complexes 2 and 4 and these studies confirm the mixed valence Co(II)/Co(III) nature of the compounds. The best fits of the magnetic data give an axial distortion parameter Delta = 628.7 cm(-1) for 2 and 698.8 cm(-1) for 4, and spin-orbit coupling constant lambda = -117.8 cm(-1) for 2 and -107.0 cm(-1) for 4. Therefore, this study shows that the oxidation degree of the initial cobalt(ii) salt by atmospheric oxygen can be controlled according to the pH of the medium.
The acetylacetonate complexes [Ni(2)L(1)(acac)(MeOH)] x H(2)O, 1 x H(2)O and [Ni(2)L(3)(acac)(MeOH)] x 1.5H(2)O, 2 x 1.5H(2)O (H(3)L(1) = (2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine and H(3)L(3) = (2-(5-bromo-2-hydroxyphenyl)-1,3-bis[4-(5-bromo-2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) were prepared and fully characterised. Their crystal structures show that they are dinuclear complexes, extended into chains by hydrogen bond interactions. These compounds were used as starting materials for the isolation of the corresponding [Ni(2)HL(x)(o-O(2)CC(6)H(4)CO(2))(H(2)O)] x n MeOH and [Ni(2)HL(x)(O(2)CCH(2)CO(2))(H(2)O)]x nH(2)O dicarboxylate complexes (x = 1, 3; n = 1-3). The crystal structures of [Ni(2)HL(1)(o-O(2)CC(6)H(4)CO(2))(H(2)O)] x MeOH, 3 x MeOH, [Ni(2)HL(3)(o-O(2)CC(6)H(4)CO(2))(H(2)O)] x 3 MeOH, 4 x 3 MeOH and [Ni(2)HL(1)(O(2)CCH(2)CO(2))(H(2)O)] x 2.5H(2)O x 0.25 MeOH x MeCN, 5 x 2.5H(2)O x 0.25 MeOH x MeCN, were solved. Complexes 3-5 show dinuclear [Ni(2)HL(x)(dicarboxylate)(H(2)O)] units, expanded through hydrogen bonds that involve carboxylate and water ligands, as well as solvate molecules. The variable temperature magnetic susceptibilities of all the complexes show an intramolecular ferromagnetic coupling between the Ni(II) ions, which is attempted to be rationalized by comparison with previous results and in the light of molecular orbital treatment. Magnetisation measurements are in accord with a S = 2 ground state in all cases.
The copper(II) complex Cu2L(OAc)(H2O)3.5, 1 x 3.5H2O was obtained and its reactivity in a basic medium investigated. Complex 1 x 3.5H2O shows different reaction patterns in air and in an inert atmosphere. Accordingly, interaction of 1 x 3.5H2O with Me4NOH x 5H2O in methanol-acetonitrile in air yields the hydroxide complex Cu2L(OH)(H2O)1.125, 2 x 1.125H2O while Cu2L(OMe)(MeOH)0.5(H2O), 3 x 0.5MeOH x H2O is isolated under an argon atmosphere. The products 1-3 were fully characterised and single crystals of {[Cu2L(OAc)] x MeCN x 3.5H2O}2, 1 x MeCN x 3.5H2O, {[Cu2L(OH)] x MeCN x 1.125H2O}2, 2 x MeCN x 1.125H2O and [Cu2L(OMe)] x 0.5MeOH x H2O, 3 x 0.5MeOH x H2O solved. The single X-ray study shows that 1-3 are dinuclear complexes with an endogenous phenol oxygen and an exogenous O-bridge. Magnetic characterisation of the three dinuclear complexes was performed, showing an apparent anomalous intramolecular ferromagnetic coupling between the metal atoms in all cases.
The simple nickel(II) acetate/H(3)L system (H(3)L = 2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) presents an unusually complicated reactivity scheme, which strongly depends on the Ni(OAc)(2)/H(3)L molar ratio and on the pH of the medium. Thus, in addition to the formerly reported compounds [Ni(2)L(OAc)(H(2)O)(2)][Ni(2)L(OAc)(H(2)O)(HOAc)].3.25H(2)O, 1.3.25H(2)O; [{Ni(3)L(OAc)(OH)(H(2)O)(MeOH)(2)}(CO(3)){Ni(2)L(OAc)(MeOH)(2)}].2.7H(2)O.1.5MeOH, 2.2.7H(2)O.1.5MeOH; and [Ni(3)L(OAc)(2)(OH)(H(2)O)(MeOH)(2)].3H(2)O.0.5MeOH, 3.3H(2)O.0.5MeOH, this system can also yield some other complexes as [Ni(2)L(o-O-C(6)H(4)-CHO)(H(2)O)].1.75H(2)O, 4.1.75H(2)O; [Ni(2)L(OH)(H(2)O)(MeOH)].3H(2)O.1.5MeOH, 5.3H(2)O.1.5MeOH; [Ni(2)L(OAc)(MeOH)(2)].H(2)O.3MeOH, 6.H(2)O.3MeOH; and [{Ni(2)L(MeOH)}(CO(3)){Ni(2)L(MeOH)(2)}].4.75H(2)O.2MeOH, 7.4.75H(2)O.2MeOH. A detailed study of the reaction scheme that allows obtaining all of these complexes is presented herein, as well as the structural characterization of the novel compounds 4.1.75H(2)O to 7.4.75H(2)O.2MeOH. X-ray analyses show that all of them present stereoisomery in the solid state. In this way, 6.H(2)O.3MeOH appears particularly interesting, as its molecular and supramolecular chirality is only controlled by hydrogen bonds. Magnetic studies of 5.3H(2)O to 7.4.75H(2)O.2MeOH are also discussed, and the complicated magnetic superexchange pathway shown by 7.4.75H(2)O.2MeOH is analyzed in light of DFT calculations.
Reaction of nickel(II) acetate with H(3)L (2-(5-bromo-2-hydroxyphenyl)-1,3-bis[4-(5-bromo-2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) yields [Ni(2)L(OAc)(H(2)O)(2)].3MeCN.2H(2)O (1.3MeCN.2H(2)O), crystallographically characterized. 1 is unstable in solution for a long time and hydrolyzes to give [Ni(2)L(o-OC(6)H(3)BrCHO)(H(2)O)].2.25MeCN.H(2)O (2.2.25MeCN.H(2)O). In addition, 1 uptakes CO(2) from air in a basic methanol/acetonitrile solution, yielding [[Ni(2)L(MeOH)](2)(CO(3))].1.5MeOH.MeCN.H(2)O (3.1.5MeOH.MeCN.H(2)O). The X-ray characterization of 3 reveals that it is a tetranuclear nickel cluster, which can be considered as the result of a self-assembly process from two dinuclear [Ni(2)L](+) blocks, joined by a mu(4)-eta(2):eta(2)-O,O carbonate ligand. The coordination mode of the carbonate anion is highly unusual and, to the best of our knowledge, it has not been described thus far for first-row transition metal complexes or magnetically studied until now. Magnetic characterization of 1 and 3 shows net intramolecular ferromagnetic coupling between the metal atoms in both cases, with S = 2 and S = 4 ground states for 1 and 3, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.