Background Numerous wrist-wearable devices to measure physical activity are currently available, but there is a need to unify the evidence on how they compare in terms of acceptability and accuracy. Objective The aim of this study is to perform a systematic review of the literature to assess the accuracy and acceptability (willingness to use the device for the task it is designed to support) of wrist-wearable activity trackers. Methods We searched MEDLINE, Embase, the Cochrane Central Register of Controlled Trials, and SPORTDiscus for studies measuring physical activity in the general population using wrist-wearable activity trackers. We screened articles for inclusion and, for the included studies, reported data on the studies’ setting and population, outcome measured, and risk of bias. Results A total of 65 articles were included in our review. Accuracy was assessed for 14 different outcomes, which can be classified in the following categories: count of specific activities (including step counts), time spent being active, intensity of physical activity (including energy expenditure), heart rate, distance, and speed. Substantial clinical heterogeneity did not allow us to perform a meta-analysis of the results. The outcomes assessed most frequently were step counts, heart rate, and energy expenditure. For step counts, the Fitbit Charge (or the Fitbit Charge HR) had a mean absolute percentage error (MAPE) <25% across 20 studies. For heart rate, the Apple Watch had a MAPE <10% in 2 studies. For energy expenditure, the MAPE was >30% for all the brands, showing poor accuracy across devices. Acceptability was most frequently measured through data availability and wearing time. Data availability was ≥75% for the Fitbit Charge HR, Fitbit Flex 2, and Garmin Vivofit. The wearing time was 89% for both the GENEActiv and Nike FuelBand. Conclusions The Fitbit Charge and Fitbit Charge HR were consistently shown to have a good accuracy for step counts and the Apple Watch for measuring heart rate. None of the tested devices proved to be accurate in measuring energy expenditure. Efforts should be made to reduce the heterogeneity among studies.
Background: The rapid outbreak of Coronavirus diseases (COVID-19) originating in Wuhan, China, and the subsequent declaration of a state of “pandemic” on March 11, 2020 has necessitated a widespread global response to manage and control the transmission, spread and impact of COVID-19. Mobile technology has been leveraged in a number of ways to control the spread of COVID-19, including to support knowledge translation. Mobile applications are accessible, acceptable, easily adopted, and have the ability to support social distancing efforts. The following review assesses the mobile applications currently available to address COVID-19 and seeks existing studies in the literature that evaluate such applications. Methods: 3 databases (Embase, Web of Science and PubMed), 2 application stores (GooglePlay and Apple’s App Store) and google search engine were searched from inception until April 05, 2020 using key words and search strings to identify relevant apps and/or literature. Reviews of the obtained results were examined by two reviewers in double-blind nature and assessed for inclusion or exclusion. Results: 36 studies, 72 websites and 312 mobile-based applications were identified through searches. 14 applications met the inclusion criteria and were analyzed. Additional eHealth tools identified through the search strategy were considered for supplemental analysis (including online dashboards and applications not available through application stores).Conclusion: This review provides a brief assessment of the goals of applications addressing COVID-19, the types of approaches being used by these applications, and draws conclusions on the needs not being met by such application-based interventions. Innovation and collaboration between government, healthcare organizations and application developers is needed to address the identified gaps and facilitate the successful harnessing of mobile applications in the management of COVID-19.
In Canada, Indigenous youth have remained resilient despite being confronted with a wide range of structural and systemic risks, such as long-lasting boil water advisories, over-representation in the child welfare system, and injustices related to land treaties. As people of the land, all disruptions to ecological health are a disruption to personal and community holistic health. Land-based activities and cultural continuity strengthen pathways of perseverance for Indigenous youth (Toombs et al., 2016). For youth, cultural self-expression and personal agency are enhanced with digital platforms, which are well-suited to Indigenous people’s strengths in art, music, and oral forms of passing on knowledge. The field of mental health has turned to e-supports such as mobile applications (apps) that can provide easy-to-access intervention, when needed. To date, resilience interventions have received comparatively less attention than the study of resilience factors and processes. It is timely to review the extant literature on mental health apps with Indigenous youth as, currently, Indigenous apps are in early research stages. Critically reviewing work to date, it is argued that an inclusive and expansive concept of resilience, coherent with Indigenous holistic health views, is well-positioned as a foundation for collaborative resilience app development. To date, few mental health apps have been researched with Indigenous youth, and fewer have been co-constructed with Indigenous youth and their community members. The current literature points to feasibility in terms of readiness or potential usage, and functionality for promoting an integrated cultural and holistic health lens. As this effort may be specific to a particular Indigenous nation’s values, stories, and practices, we highlight the Haudenosaunee conceptual wellness model as one example to guide Indigenous and non-Indigenous science integration, with a current project underway with the JoyPopTM mHealth app for promoting positive mental health and resilience.
Background The rapid outbreak of Coronavirus diseases (COVID-19) originating in Wuhan, China, and the subsequent declaration of a state of “pandemic” on March 11, 2020 has necessitated a widespread global response to manage and control the transmission, spread and impact of COVID-19. Mobile technology has been leveraged in a number of ways to control the spread of COVID-19, including to support knowledge translation. Mobile applications are accessible, acceptable, easily adopted, and have the ability to support social distancing efforts. The following review assesses the mobile applications currently available to address COVID-19 and seeks existing studies in the literature that evaluate such applications. Methods 3 databases (Embase, Web of Science and PubMed), 2 application stores (GooglePlay and Apple’s App Store) and google search engine were searched from inception until April 05th 2020 using key words and search strings to identify relevant apps and/or literature. Reviews of the obtained results were examined by two reviewers in double-blind nature and assessed for inclusion or exclusion. Results 36 studies, 72 websites and 312 mobile-based applications were identified through searches. 14 applications met the inclusion criteria and were analyzed. Additional eHealth tools identified through the search strategy were considered for supplemental analysis (including online dashboards and applications not available through application stores). Conclusion This review provides a brief assessment of the goals of applications addressing COVID-19, the types of approaches being used by these applications, and draws conclusions on the needs not being met by such application-based interventions. Innovation and collaboration between government, healthcare organizations and application developers is needed to address the identified gaps and facilitate the successful harnessing of mobile applications in the management of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.