The cochlea is our fluid-filled organ of hearing with a unique spiral shape. The physiological role of this shape remains unclear. Previous research has paid only little attention to the occurrence of transverse flow in the cochlea, in particular in relation to the cochlea's shape. To better understand its influence on fluid dynamics, this study aims to characterize transverse flow due to harmonically oscillating axial flow in square ducts with curvature and torsion, similar to the shape of human cochleae. Four geometries were investigated to study curvature and torsion effects on axial and transverse fluid flow components. Twelve frequencies from 0.125 Hz to 256 Hz were studied, covering infrasound and low-frequency hearing, with mean inlet velocity amplitudes representing levels expected for normal conversations or louder situations. Our simulations show that torsion contributes significantly to transverse flow in unsteady conditions, and that its contribution increases with increasing oscillation frequencies. Curvature has a small effect on transverse flow, which decreases rapidly for increasing frequencies. Strikingly, the combined effect of curvature and torsion on transverse flow is greater than expected from a simple superposition of the two effects, especially when the relative contribution of curvature alone becomes negligible. These findings could be relevant to understand physiological processes in the cochlea, including metabolite transport and wall shear stresses. Further studies are needed to investigate possible implications on cochlear mechanics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.