Background Fine particulate matter <2.5 µm in diameter (PM 2.5 ) has known effects on cardiovascular morbidity and mortality. However, no study has quantified and compared the risks of incident myocardial infarction, incident stroke, ischemic heart disease (IHD) mortality, and cerebrovascular mortality in relation to long‐term PM 2.5 exposure. Methods and Results We sought to quantitatively summarize studies of long‐term PM 2.5 exposure and risk of IHD and stroke events by conducting a review and meta‐analysis of studies published by December 31, 2019. The main outcomes were myocardial infarction, stroke, IHD mortality, and cerebrovascular mortality. Random effects meta‐analyses were used to estimate the combined risk of each outcome among studies. We reviewed 69 studies and included 42 studies in the meta‐analyses. In meta‐analyses, we found that a 10‐µg/m 3 increase in long‐term PM 2.5 exposure was associated with an increased risk of 23% for IHD mortality (95% CI, 15%–31%), 24% for cerebrovascular mortality (95% CI, 13%–36%), 13% for incident stroke (95% CI, 11%–15%), and 8% for incident myocardial infarction (95% CI, −1% to 18%). There were an insufficient number of studies of recurrent stroke and recurrent myocardial infarction to conduct meta‐analyses. Conclusions Long‐term PM 2.5 exposure is associated with increased risks of IHD mortality, cerebrovascular mortality, and incident stroke. The relationship with incident myocardial infarction is suggestive of increased risk but not conclusive. More research is needed to understand the relationship with recurrent events.
Inorganic arsenic (iAs) is carcinogenic and highly concentrated in rice. Dietary exposure to iAs is concerning among adolescents due to their developmental stage and iAs’s long-latency effects. This paper aimed to assess iAs exposure from rice and related lifetime cancer risks (LCR) among adolescents in Kunming, China. A comprehensive literature review of iAs levels in rice and LCR in humans was also conducted. Average daily consumption of rice (ADC) was estimated from 267 adolescents (15–18 years). Rice samples obtained from 6 markets were analyzed for iAs concentration (AC). Estimated daily intake (EDI) of iAs was calculated using ADC, AC, and average body weight (BW). Lifetime Cancer Risk (LCR) was calculated using EDI and U.S. EPA derived iAs oral slope factor. The AC was 0.058 mg/kg and the average BW and ADC were 67.5 kg and 410 g/day for males and 55.5 kg and 337 g/day for females. The EDI and LCR were 3.52 × 10−4 mg/kg-BW/day and 5.28 × 10−4 for both males and females, with LCR 5 times above the U.S. LCR upper limit of 1.0 × 10−4. While the AC was below the Chinese maximum contaminant level of 0.2 mg/kg, study results indicated that Kunming adolescents may be at increased risk for iAs-related cancers.
Background Previous studies have found associations between fine particulate matter <2.5 µm in diameter (PM 2.5 ) and increased risk of cardiovascular disease (CVD) among populations with no CVD history. Less is understood about susceptibility of adults with a history of CVD and subsequent PM 2.5 ‐related CVD events and whether current regulation levels for PM 2.5 are protective for this population. Methods and Results This retrospective cohort study included 96 582 Kaiser Permanente Northern California adults with a history of stroke or acute myocardial infarction. Outcome, covariate, and address data obtained from electronic health records were linked to time‐varying 1‐year mean PM 2.5 exposure estimates based on residential locations. Cox proportional hazard models estimated risks of stroke, acute myocardial infarction, and cardiovascular mortality associated with PM 2.5 exposure, adjusting for multiple covariates. Secondary analyses estimated risks below federal and state regulation levels (12 µg/m 3 for 1‐year mean PM 2.5 ). A 10‐µg/m 3 increase in 1‐year mean PM 2.5 exposure was associated with an increase in risk of cardiovascular mortality (hazard ratio [HR], 1.20; 95% CI, 1.11–1.30), but no increase in risk of stroke or acute myocardial infarction. Analyses of <12 µg/m 3 showed increased risk for CVD mortality (HR, 2.31; 95% CI, 1.96–2.71), stroke (HR, 1.41; 95% CI, 1.09–1.83]), and acute myocardial infarction (HR, 1.51; 95% CI, 1.21–1.89) per 10‐µg/m 3 increase in 1‐year mean PM 2.5 . Conclusions Adults with a history of CVD are susceptible to the effects of PM 2.5 exposure, particularly on CVD mortality. Increased risks observed at exposure levels <12 µg/m 3 highlight that current PM 2.5 regulation levels may not be protective for this susceptible population.
ImportanceLong-term exposure to fine particulate air pollution (PM2.5) is a known risk factor for cardiovascular events, but controversy remains as to whether the current National Ambient Air Quality Standard (12 μg/m3 for 1-year mean PM2.5) is sufficiently protective.ObjectiveTo evaluate the associations between long-term fine particulate air pollution and cardiovascular events using electronic health record and geocoded address data.Design, Setting, and ParticipantsThis retrospective cohort study included adults in the Kaiser Permanente Northern California integrated health care system during 2007 to 2016 and followed for up to 10 years. Study participants had no prior stroke or acute myocardial infarction (AMI), and lived in Northern California for at least 1 year. Analyses were conducted January 2020 to December 2022.ExposureLong-term exposure to PM2.5. Individual-level time-varying 1-year mean PM2.5 exposures for every study participant were updated monthly from baseline through the end of follow-up, accounting for address changes.Main Outcomes and MeasuresIncident AMI, ischemic heart disease (IHD) mortality, and cardiovascular disease (CVD) mortality. Cox proportional hazards models were fit with age as time scale, adjusted for sex, race and ethnicity, socioeconomic status, smoking, body mass index, baseline comorbidities, and baseline medication use. Associations below the current regulation limit were also examined.ResultsThe study cohort included 3.7 million adults (mean [SD] age: 41.1 [17.2] years; 1 992 058 [52.5%] female, 20 205 [0.5%] American Indian or Alaskan Native, 714 043 [18.8%] Asian, 287 980 [7.6%] Black, 696 796 [18.4%] Hispanic, 174 261 [4.6%] multiracial, 1 904 793 [50.2%] White). There was a 12% (95% CI, 7%-18%) increased risk of incident AMI, a 21% (95% CI, 13%-30%) increased risk of IHD mortality, and an 8% (95% CI, 3%-13%) increased risk of CVD mortality associated with a 10 μg/m3 increase in 1-year mean PM2.5. PM2.5 exposure at moderate concentrations (10.0 to 11.9 μg/m3) was associated with increased risks of incident AMI (6% [95% CI, 3%-10%]) and IHD mortality (7% [95% CI, 2%-12%]) compared with low concentrations (less than 8 μg/m3).Conclusions and RelevanceIn this study, long-term PM2.5 exposure at moderate concentrations was associated with increased risks of incident AMI, IHD mortality, and CVD mortality. This study’s findings add to the evidence that the current regulatory standard is not sufficiently protective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.