Appropriate nutraceutical combinations may represent a valid approach to prevent vascular calcification associated with chronic kidney disease (CKD). In the present study, we tested the effect of a new nutraceutical combination named RenaTris®, containing MK-7, magnesium carbonate, and Sucrosomial® Iron, on vascular calcification in uremic rats. Rats were randomly divided into three groups, i.e., control (high-phosphate diet), uremic (high-phosphate diet containing 0.5% adenine), and supplemented uremic diet (0.5% adenine, MK-7, magnesium carbonate, and Sucrosomial® Iron). After six weeks, sera and vascular calcification were examined. The uremic diet increased creatinine and phosphate levels and induced extensive vascular calcification. The uremic condition also induced a mild hypercholesterolemic condition (+52% of total cholesterol; p < 0.05). The supplemented uremic diet did not reduce creatinine, phosphate levels, or vascular calcification, however, we observed a significant hypocholesterolemic effect (−18.9% in supplemental uremic vs. uremic diet; p < 0.05). Similar to simvastatin, incubation of cultured human hepatoma cells (Huh7) with MK-7 significantly reduced cholesterol biosynthesis (−38%) and induced 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase and low-density lipoprotein receptor (LDLR) at both mRNA and protein levels. The effect of MK-7 on LDLR was counteracted by the co-incubation with squalene. Unlike simvastatin, MK-7 reduced PCSK9 in Huh7. These results indicated that the new nutraceutical combination significantly impacts cholesterol metabolism and its supplementation may help to control mild hypercholesterolemic conditions in CKD patients.
Girardinia diversifolia, also known as Himalayan nettle, is a perennial herb used in Nepal to make fiber as well as in traditional medicine for the treatment of several diseases. To date, phytochemical studies and biological assays on this plant are scarce. Thus, in the present work, the G. diversifolia extracts have been evaluated for their potential pharmaceutical, cosmetic and nutraceutical uses. For this purpose, detailed phytochemical analyses were performed, evidencing the presence of phytosterols, fatty acids, carotenoids, polyphenols and saponins. The most abundant secondary metabolites were β- and γ-sitosterol (11 and 9% dw, respectively), and trans syringin (0.5 mg/g) was the most abundant phenolic. Fatty acids with an abundant portion of unsaturated derivatives (linoleic and linolenic acid at 22.0 and 9.7 mg/g respectively), vitamin C (2.9 mg/g) and vitamin B2 (0.12 mg/g) were also present. The antioxidant activity was moderate while a significant ability to inhibit acetylcholinesterase (AChE), butyrilcholinesterase (BuChE), tyrosinase, α-amylase and α-glucosidase was observed. A cytotoxic effect was observed on human ovarian, pancreatic and hepatic cancer cell lines. The effect in hepatocarcinoma cells was associated to a downregulation of the low-density lipoprotein receptor (LDLR), a pivotal regulator of cellular cholesterol homeostasis. These data show the potential usefulness of this species for possible applications in pharmaceuticals, nutraceuticals and cosmetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.