Background To identify the role of physical prehabilitation (PP) in liver regeneration, mitochondrial function, biogenesis, and inflammatory response was investigated after associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) in a rodent model. Methods Male Wistar rats (n = 60) underwent ALPPS. Animals were divided (n = 30) to the physical prehabilitation group (PP) and sedentary group (S). The animals were exsanguinated before (0 hour) and 24, 48, 72, or 168 hours after the operation. Regeneration rate and proliferation index were assessed. Mitochondrial function, biogenesis, and inflammatory response were evaluated. Results Regeneration rate and Ki67 index were significantly increased in the PP group compared to the S group (P < .001). Due to the changes in oxidative capacity and ATP production rate, the P/O ratio of PP group compared to the S group was significantly increased (P < .05). PP group was characterized by accelerated mitochondrial biogenesis and less intense inflammatory response compared to the S group. Conclusions To our knowledge, this is the first demonstration of the beneficial effects of PP on liver regeneration, mitochondrial function, biogenesis, and the inflammatory response after ALPPS.
Copy number variations (CNVs) comprise about 10% of reported disease-causing mutations in Mendelian disorders. Nevertheless, pathogenic CNVs may have been under-detected due to the lack or insufficient use of appropriate detection methods. In this report, on the example of the diagnostic odyssey of a patient with Marfan syndrome (MFS) harboring a hitherto unreported 32-kb FBN1 deletion, we highlight the need for and the feasibility of testing for CNVs (>1 kb) in Mendelian disorders in the current nextgeneration sequencing (NGS) era.
Background: Clinical evidence suggests that the currently recommended approach to estimate the risk of aortic dissection in Marfan syndrome (MFS) is not reliable enough. Therefore, we investigated the possible role of visceral arterial tortuosity in the risk stratification. Methods and results: Splenic and renal arteries of 37 MFS patients and 74 age and gender matched control subjects were segmented using CT angiography imaging. To measure tortuosity, distance metric (DM), sum of angles metric (SOAM), inflection count metric (ICM), and the ratio of ICM and SOAM (ICM/SOAM) were calculated. DM of the splenic, right and left renal artery was significantly higher in MFS patients than in controls (2.44 [1.92-2.80] vs. 1.75 [1.57-2.18] p < 0.001; 1.16 [1.10-1.28] vs. 1.11 [1.07-1.15] p = 0.011; 1.40 [1.29-1.70] vs. 1.13 [1.09-1.23] p < 0.001, respectively). A similar tendency for ICM and an opposite tendency for SOAM were observed. ICM/SOAM was significantly higher in the MFS group compared to controls in case of all three arteries (73.35 [62.26-93.63] vs. 50.91 [43.19-65.62] p < 0.001; 26.52 [20.69-30.24] vs. 19.95 [16.47-22.95] p < 0.001; 22.81 [18.64-30.96] vs. 18.38 [15.29-21.46] p < 0.001, respectively). MFS patients who underwent aortic root replacement had increased right and left renal DM and ICM/SOAM compared to MFS patients without surgery. Conclusion:To our knowledge this is the first demonstration of increased arterial tortuosity in MFS on visceral arteries. Visceral arterial tortuosity, dominated by curves of lower frequency but higher amplitude according to the observed opposite tendency between the DM and SOAM metrics, could be a possible new predictor of serious manifestations of MFS.
Background: the role of bile acid (BA)-induced farnesoid X receptor (Fxr) signaling in liver regeneration following associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) was investigated in a rat model. Methods: Male Wistar rats underwent portal vein ligation (PVL) (n = 30) or ALPPS (n = 30). Animals were sacrificed pre-operatively and at 24, 48, 72, or 168 h after intervention. Regeneration rate, Ki67 index, hemodynamic changes in the hepatic circulation, and BA levels were assessed. Transcriptome analysis of molecular regulators involved in the Fxr signaling pathway, BA transport, and BA production was performed. Results: ALLPS induced more extensive liver regeneration (p < 0.001) and elevation of systemic and portal BA levels (p < 0.05) than PVL. The mRNA levels of proteins participating in hepatic Fxr signaling were comparable between the intervention groups. More profound activation of the intestinal Fxr pathway was observed 24 h after ALPPS compared to PVL. Conclusion: Our study elaborates on a possible linkage between BA-induced Fxr signaling and accelerated liver regeneration induced by ALPPS in rats. ALPPS could trigger liver regeneration via intestinal Fxr signaling cascades instead of hepatic Fxr signaling, thereby deviating from the mechanism of BA-mediated regeneration following one-stage hepatectomy.
Marfan syndrome (MFS) is a genetically determined connective tissue disorder that leads to ocular, skeletal, and severe cardiovascular involvement. High mortality of MFS is associated with aortic dissection and aneurysm characteristic to the syndrome. In MFS, only a few cases of peripheral arterial involvement have been reported so far, mostly without a genetically confirmed diagnosis. We report a 41-year-old MFS patient with a saccular pearl-string-like aneurysm on the right internal mammary artery (RIMA) and a single aneurysm on the left internal mammary artery (LIMA). To our knowledge this is the first reported case on internal mammary artery aneurysms with this special morphology and with follow-up and blood pressure control as primary therapeutic approach in a patient with genetically confirmed MFS. The aneurysms with the above described morphology first appeared as small aneurysms on a CT scan 6 years after a cardiac operation. Due to the lack of guidelines, based on the asymptomatic state of the patient, the increased tortuosity of the affected vessels and the history of prior cardiac surgery, we decided to closely monitor these aneurysms with blood pressure control and without carrying out any interventions. On the CT scans done 3, 11, 12, 17, and 32 months after identifying the aneurysms, no progression of these structures was detected. Our findings confirm the possibility of the occurrence of internal mammary artery aneurysms in patients with FBN1 mutation and we believe that monitoring these aneurysms with blood pressure management can be a suitable option in selected cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.