Tardigrades constitute a phylum of miniaturized metazoans with ca. 1030 living species, a fossil record that probably dates back to the Cambrian, and physiological properties that allow them to live in almost any environment known to host life on Earth-they can also survive in space. Despite broad consensus regarding their membership of the superclade Ecdysozoa, the exact position of the phylum remains contested (some analyses suggest onychophorans and arthropods as their closest relatives, while others suggest a relationship to nematodes and nematomorphs) and the internal relationships of the phylum are still poorly understood. In the present study, we present a hypothesis of tardigrade relationships by examining more taxa and more markers than any previously published phylogeny of the group. We generated novel data for three markers (18S rRNA, 28S rRNA, COI) for 42 individuals of 16 carefully identified species, comprising 12 genera and five families from the classes Heterotardigrada and Eutardigrada, and analysed them in conjunction with nearly all data available from GenBank. Our results show certain disagreement with current taxonomy both at higher ranks (families, orders, classes) and at low (generic) taxonomic levels. When studying the sensitivity to outgroup choice, the class Eutardigrada was monophyletic under only one combination of outgroups; all other combinations placed the eutardigrade order Apochela as sister to the class Heterotardigrada. Phylogenetic relationships within the other eutardigrade order, Parachela, were stable to outgroup choice. Eutardigrade superfamilies recently proposed by Sands and collaborators in the order Parachela were tested with the introduction of new sequences from additional genera, and the possible morphological synapomorphies supporting those superfamilies are discussed.
Providing accurate animals’ phylogenies rely on increasing knowledge of neglected phyla. Tardigrada diversity evaluated in broad phylogenies (among phyla) is biased towards eutardigrades. A comprehensive phylogeny is demanded to establish the representative diversity and propose a more natural classification of the phylum. So, we have performed multilocus (18S rRNA and 28S rRNA) phylogenies with Bayesian inference and maximum likelihood. We propose the creation of a new class within Tardigrada, erecting the order Apochela (Eutardigrada) as a new Tardigrada class, named Apotardigrada comb. n. Two groups of evidence support its creation: (a) morphological, presence of cephalic appendages, unique morphology for claws (separated branches) and wide‐elongated buccopharyngeal apparatus without placoids, and (b) phylogenetic support based on molecular data. Consequently, order Parachela is suppressed and its superfamilies erected as orders within Eutardigrada, maintaining their current names. We propose a new classification within the family Echiniscidae (Echiniscoidea, Heterotardigrada) with morphological and phylogenetic support: (a) subfamily Echiniscinae subfam. n., with two tribes Echiniscini tribe n. and Bryodelphaxini tribe n.; (b) subfamily Pseudechiniscinae subfam. n., with three tribes Cornechiniscini tribe n., Pseudechiniscini tribe n. and Anthechiniscini tribe n.; and (c) subfamily Parechiniscinae subfam. n., with two tribes Parechiniscini tribe n. and Novechiniscini tribe n. Reliable biodiversity selection for tardigrades in broad phylogenies is proposed due to biased analyses performed up to now. We use our comprehensive molecular phylogeny to evaluate the evolution of claws in the clawless genus Apodibius and claw reduction across the Tardigrada tree of life. Evolutionary consequences are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.