The clinical evolution of COVID-19 pneumonia is poorly understood. Identifying the metabolic pathways that are altered early with viral infection and their association with disease severity is crucial to understand COVID-19 pathophysiology, and guide clinical decisions. This study aimed at assessing the critical metabolic pathways altered with disease severity in hospitalized COVID-19 patients. Forty-nine hospitalized patients with COVID-19 pneumonia were enrolled in a prospective, observational, single-center study in Barcelona, Spain. Demographic, clinical, and analytical data at admission were registered. Plasma samples were collected within the first 48 h following hospitalization. Patients were stratified based on the severity of their evolution as moderate (N = 13), severe (N = 10), or critical (N = 26). A panel of 221 biomarkers was measured by targeted metabolomics in order to evaluate metabolic changes associated with subsequent disease severity. Our results show that obesity, respiratory rate, blood pressure, and oxygen saturation, as well as some analytical parameters and radiological findings, were all associated with disease severity. Additionally, ceramide metabolism, tryptophan degradation, and reductions in several metabolic reactions involving nicotinamide adenine nucleotide (NAD) at inclusion were significantly associated with respiratory severity and correlated with inflammation. In summary, assessment of the metabolomic profile of COVID-19 patients could assist in disease severity stratification and even in guiding clinical decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.