Based on this retrospective analysis within a large patient population from a multicenter study, the GREAT score shows good external validity and can be used for assessing the risk for relapse in Graves' disease, which influence the initial treatment decisions.
Background Early diagnosis and relapse prediction in Graves’ disease influences treatment. We assessed the abilities of four TSH-receptor antibody tests [TRAb] and one cyclic adenosine monophosphate bioassay to predict relapse of Graves’ disease. Methods Observational study investigating patients presenting with Graves’ disease at a Swiss hospital endocrine referral center or an endocrine outpatient clinic. Main outcomes were diagnosis and relapse of Graves’ disease after stop of anti-thyroid drugs. We used Cox regression to study associations of TRAb levels with relapse risk and calculated c-statistics [AUC] to assess discrimination. Blood draws took place as close as possible to treatment initiation. Results AUCs ranged from 0.90 (TSAb Biossay by RSR) to 0.97 (IMMULITE TSI by Siemens). Highest sensitivity (94.0%) was observed for IMMULITE TSI and RSR TRAb Fast, while the greatest specificity (97.9%) was found with the EliA anti-TSH-R (by Thermo Fisher). In Cox regression analysis comparing the highest versus the lower quartiles, the highest hazard ratio [HR] for relapse was found for BRAHMS TRAK (by Thermo Fisher) (2.98, 95% CI 1.13–7.84), IMMULITE TSI (2.40, 95% CI 0.91–6.35), EliA anti-TSH-R (2.05, 95% CI 0.82–5.10), RSR Fast TRAb (1.80, 95% CI 0.73–4.43), followed by RSR STIMULATION (1.18, 95% CI 0.46–2.99). Discrimination analyses showed respective AUCs of 0.68, 0.65, 0.64, 0.64, and 0.59. Conclusion The assays tested had good diagnostic power and relapse risk prediction with few differences among the new assays. Due to the small sample size and retrospective design with possible selection bias, our data need prospective validation. Electronic supplementary material The online version of this article (10.1186/s12902-019-0363-6) contains supplementary material, which is available to authorized users.
Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: "This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition". Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.