Grafted plants are often more tolerant to salinity than nongrafted controls. In order to distinguish differential response components in grafted melon (Cucumis melo L.), salt stress was imposed on several rootstock–scion combinations in four experiments. The rootstock used was an interspecific squash (Cucurbita maxima Duch. × Cucurbita moschate Duch.), RS841, combined with two cantaloupe (C. melo var. cantalupensis) cultivars, namely London and Brennus, against both self-grafted and nongrafted controls. Physiological, morphological and biochemical adaptations to 0, 40 and 80 mM NaCl were monitored. Upon salinity, plant biomass and leaf area were improved by grafting per se, since self-grafted plants performed similarly to the heterografted ones. However, improvements in the exclusion of Na+ and the uptake of K+ were due only to the rootstock genotype, since ionic composition was similar in self-grafted and nongrafted plants. These results indicate that the favourable effects of grafting on plant growth cannot be ascribed to a more efficient exclusion of Na+ or enhanced nutrient uptake. On the other hand, growth improvements in both self- and heterografted plants were associated with a more efficient control of stomatal functions (changes in stomatal index and water relations), which may indicate that the grafting incision may alter hormonal signalling between roots and shoots.
Grafting by vegetables is a practice with many benefits, but also with some unknown influences on the chemical composition of the fruits. Our goal was to assess the effects of grafting and storage on the extracted juice of four orange-fleshed Cantaloupe type (Celestial, Donatello, Centro, Jannet) melons and two green-fleshed Galia types (Aikido, London), using sensory profile analysis and analytical instruments: An electronic tongue (E-tongue) and near-infrared spectroscopy (NIRS). Both instruments are known for rapid qualitative and quantitative food analysis. Linear discriminant analysis (LDA) was used to classify melons according to their varieties and storage conditions. Partial least square regression (PLSR) was used to predict sensory and standard analytical parameters. Celestial variety had the highest intensity for sensory attributes in Cantaloupe variety. Both green and orange-fleshed melons were discriminated and predicted in LDA with high accuracies (100%) using the E-tongue and NIRS. Galia and Cantaloupe inter-varietal classification with the E-tongue was 89.9% and 82.33%, respectively. NIRS inter-varietal classification was 100% with Celestial variety being the most discriminated as with the sensory results. Both instruments, classified different storage conditions of melons (grafted and self-rooted) with high accuracies. PLSR showed high accuracy for some standard analytical parameters, where significant differences were found comparing different varieties in ANOVA.
The goal of this research was to investigate the effect of electrical conductivity (EC) levels of the nutrient solution on the fresh weight, chlorophyll, and nitrate content of hydroponic-system-grown lettuce. The selected cultivars are the most representative commercial varieties grown for European markets. Seven cultivars (‘Sintia,’ ‘Limeira,’ ‘Corentine,’ ‘Cencibel,’ ‘Kiber,’ ‘Attiraï,’ and ‘Rouxaï’) of three Lactuca sativa L. types’ (butterhead, loose leaf, and oak leaf) were grown in a phytotron in rockwool, meanwhile the EC level of the nutrient solutions were different: normal (<1.3 dS/m) and high (10 dS/m). The plants in the saline condition had a lower yield but elevated chlorophyll content and nitrate level, although the ‘Limeira’ and ‘Cencibel’ cultivars had reduced nitrate levels. The results and the special characteristic of the lollo-type cultivars showed that the nitrate level could be very different due to salinity (‘Limeira’ had the lowest (684 µg/g fresh weight (FW)) and ‘Cencibel’ had the highest (4396 µg/g FW)). There was a moderately strong negative correlation (−0.542) in the reverse ratio among the chlorophyll and nitrate contents in plants treated with a normal EC value, while this relationship was not shown in the saline condition. Under the saline condition, cultivars acted differently, and all examined cultivars stayed under the permitted total nitrate level (5000 µg/g FW).
Urban gardens are spreading in many cities across Europe, with community gardening being a fundamental form of urban agriculture. While the literature reveals the essential role that community gardens can play in terms of learning and education, no studies have investigated the training needs for participants in community gardens to ensure their successful development. The goal of this article is to evaluate the training requirements of urban community gardens to ensure their successful implementation and their contribution to sustainability in European cities. Two questionnaires of users’ needs analysis were designed and implemented in Berlin, Bologna, Budapest, and Cartagena. The results unveiled the need to re-enforce the training in the formation and community building phases of community gardens towards ensuring the creation of an engaged gardening community to maintain activity, particularly for top-down activities (e.g., research-related gardens). Users claimed their need for being trained on crop management skills (e.g., maintenance, bed preparation, organic practices) and on communication skills to further disseminate their activity, thereby increasing the potential for citizen engagement. Such requirements could be overcome with the creation of urban gardens networks, where experiences and knowledge are shared among practitioners. Policy recommendations are provided based on the outputs of this study.
In low-cost, unheated greenhouses and tunnels the use of arbuscular mycorrhizal fungi (AMF) and/or grafting can be a less expensive and sustainable solution to combat the adverse effects of monoculture, instead of costly soilless culture. The aim of the present study was to investigate the effects of a commercially available AMF inoculant and grafting on sweet pepper, under circumstances of modelling commercial low-tech greenhouse production. ‘SV9702PP F1’ sweet pepper hybrid was cultivated for seven months in an unheated greenhouse. Beside the control, three treatments were applied: ungrafted AMF treated plants, plants grafted on ‘Bagi F1’ hybrid and AMF treated plus grafted plants. AMF was applied into the planting holes just before transplanting. AMF treatment had positive effects on relative chlorophyll content of leaves (expressed in SPAD value), on plant stand, on plant mass production, on yield and on root colonization rate, despite the high presence of indigenous populations of AMF in the greenhouse soil. With the applied rootstock/scion combination, grafting did not significantly affect the aforementioned parameters. SPAD values were increased by the AMF treatment during periods when smaller doses of nitrogen (less than 0.8 g N per m-2 week-1) were applied. Significant positive correlation was found between root colonization rate and marketable yield. AMF treatment increased the yield by 18% (from 12.43 to 14.74 kg m-2), mostly due to higher number of fruits. Yield increase was mainly realised during the last third of the harvest period, when the applied nutrient doses were low and temperature conditions were suboptimal. ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 4, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.