This study examines the microbiological and epidemiological characteristics of toxigenic and non-toxigenic Corynebacterium isolates submitted to the national reference laboratory in Spain, between 2014 and 2019, in order to describe the current situation and improve our knowledge regarding these emerging pathogens. Epidemiological information was extracted from the Spanish Surveillance System. Microbiological and molecular characterisation was carried out using phenotypic methods, multilocus sequence typing (MLST), whole genome sequencing (WGS) and core genome MLST (cgMLST). Thirty-nine isolates were analysed. Twenty-one were identified as C. diphtheriae (six toxigenic), 14 as C. belfantii and four as C. ulcerans (three toxigenic). One C. diphtheriae isolate was identified as non-toxigenic tox gene-bearing (NTTB). Ages of patients ranged from one to 89 years, with 10% (3/30) of non-toxigenic and 22% (2/9) of toxigenic isolates collected from children less than 15 years. Twenty-five of the patients were males (17/30 in non-toxigenic; 8/9 in toxigenic). MLST identified 28 sequence types (STs) of which seven were described for the first time in Spain. WGS analysis showed that 10 isolates, including three toxigenic isolates, harbored a variety of antibiotic resistance genes in addition to the high prevalence of penicillin resistance phenotypically demonstrated. Phylogenetic analysis revealed one cluster of isolates from family members. Risk information was available for toxigenic isolates (9/39); three patients reported recent travels to endemic countries and three had contact with cats/dogs. One unvaccinated child with respiratory diphtheria had a fatal outcome. Including non-toxigenic Corynebacterium infections in the disease surveillance and using WGS could further improve current surveillance.
Acute flaccid paralysis (AFP) surveillance is key for global polio eradication. It allows detecting poliovirus (PV) reintroductions from endemic countries. This study describes AFP surveillance in Spain from 1998 to 2015. During this time, 678 AFP cases were reported to the Spanish National Surveillance Network. The mean notification rate was 0.58 AFP cases/100,000 population under 15 years old (range: 0.45/100,000–0.78/100,000). Two periods (P) are described: P1 (1998–2006) with the AFP notification rate ranging from 0.66/100,000 to 0.78/100,000, peaking in 2001 (0.84/100,000); and P2 (2007–2015) when the AFP rate ranged from 0.43/100,000 to 0.57/100,000, with the lowest rate in 2009 (0.31/100,000). No poliomyelitis cases were caused by wild PV infections, although two Sabin-like PVs and one imported vaccine-derived PV-2 were detected. Overall, 23 (3.4%) cases met the hot case definition. Most cases were clinically diagnosed with Guillain–Barré syndrome (76.9%; 504/655). The adequate stool collection rate ranged from 33.3% (7/21) to 72.5% (29/40). The annual proportion of AFP cases with non-polio enterovirus findings varied widely across the study period. AFP surveillance with laboratory testing for non-polio enteroviruses must be maintained and enhanced both to monitor polio eradication and to establish sensitive surveillance for prompt detection of other enteroviruses causing serious symptoms.
BackgroundSince mumps vaccination was introduced in 1981 in Spain, the incidence of the disease has dropped significantly. However, cyclic epidemic waves and outbreaks still occur, despite high vaccination coverage. The World Health Organization (WHO) recommends genotyping to trace the pattern of mumps virus (MuV) circulation. Genotype H was predominant in Spain, but was replaced in 2005 by genotype G which has subsequently remained dominant. Of the small hydrophobic protein gene sequences, 78% are identical and belong to the MuVi/ Sheffield.GBR.1.05/[G]-variant. Our study aimed to investigate whether the circulation of MuV strains in Spain was continuous after the emergence of genotype G in 2005. We obtained 46 samples from Spanish patients infected with MuVi/Sheffield.GBR.1.05/[G] during two epidemic waves and analysed them using new molecular markers based on genomic non-coding regions (NCRs) that discriminate subvariants of this virus strain. Phylogenetic analyses of the nucleoprotein-phosphoprotein and matrix protein-fusion protein NCR indicated strain replacement after a drop in incidence in 2009, which had not been detectable by SH sequencing. Clustering of sequences from patients epidemiologically linked in the same outbreak suggests a potential use for these NCRs in outbreak characterisation. We suggest to consider their use in conjunction with the SH gene in the future WHO recommendations for MuV epidemiological surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.