We consider two-player non zero-sum infinite duration games played on weighted graphs. We extend the notion of secure equilibrium introduced by Chatterjee et al., from the Boolean setting to this quantitative setting. As for the Boolean setting, our notion of secure equilibrium refines the classical notion of Nash equilibrium. We prove that secure equilibria always exist in a large class of weighted games which includes common measures like sup, inf, lim sup, lim inf, mean-payoff, and discounted sum. Moreover we show that one can synthesize finite-memory strategy profiles with few memory. We also prove that the constrained existence problem for secure equilibria is decidable for sup, inf, lim sup, lim inf and mean-payoff measures. Our solutions rely on new results for zero-sum quantitative games with lexicographic objectives that are interesting on their own right.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.