18 FDG PET/CT imaging is commonly used in diagnosis and follow-up of metastatic breast cancer, but its quantitative analysis is complicated by the number and location heterogeneity of metastatic lesions. Considering that bones are the most common location among metastatic sites, this work aims to compare different approaches to segment the bones and bone metastatic lesions in breast cancer. Two deep learning methods based on U-Net were developed and trained to segment either both bones and bone lesions or bone lesions alone on PET/CT images. These methods were cross-validated on 24 patients from the prospective EPICURE seinmeta metastatic breast cancer study and were evaluated using recall and precision to measure lesion detection, as well as the Dice score to assess bones and bone lesions segmentation accuracy. Results show that taking into account bone information in the training process allows to improve the precision of the lesions detection as well as the Dice score of the segmented lesions. Moreover, using the obtained bone and bone lesion masks, we were able to compute a PET bone index (PBI) inspired by the recognized Bone Scan Index (BSI). This automatically computed PBI globally agrees with the one calculated from ground truth delineations. Clinical relevance-We propose a completely automatic deep learning based method to detect and segment bones and bone lesions on 18 FDG PET/CT in the context of metastatic breast cancer. We also introduce an automatic PET bone index which could be incorporated in the monitoring and decision process.
Metastatic breast cancer patients receive lifelong medication and are regularly monitored for disease progression. The aim of this work was to (1) propose networks to segment breast cancer metastatic lesions on longitudinal whole-body PET/CT and (2) extract imaging biomarkers from the segmentations and evaluate their potential to determine treatment response. Baseline and follow-up PET/CT images of 60 patients from the EPICUREseinmeta study were used to train two deep-learning models to segment breast cancer metastatic lesions: One for baseline images and one for follow-up images. From the automatic segmentations, four imaging biomarkers were computed and evaluated: SULpeak, Total Lesion Glycolysis (TLG), PET Bone Index (PBI) and PET Liver Index (PLI). The first network obtained a mean Dice score of 0.66 on baseline acquisitions. The second network obtained a mean Dice score of 0.58 on follow-up acquisitions. SULpeak, with a 32% decrease between baseline and follow-up, was the biomarker best able to assess patients’ response (sensitivity 87%, specificity 87%), followed by TLG (43% decrease, sensitivity 73%, specificity 81%) and PBI (8% decrease, sensitivity 69%, specificity 69%). Our networks constitute promising tools for the automatic segmentation of lesions in patients with metastatic breast cancer allowing treatment response assessment with several biomarkers.
Precise characterization of the kidney and kidney tumor characteristics is of outmost importance in the context of kidney cancer treatment, especially for nephron sparing surgery which requires a precise localization of the tissues to be removed. The need for accurate and automatic delineation tools is at the origin of the KiTS19 challenge. It aims at accelerating the research and development in this field to aid prognosis and treatment planning by providing a characterized dataset of 300 CT scans to be segmented. To address the challenge, we proposed an automatic, multi-stage, 2.5D deep learning-based segmentation approach based on Residual UNet framework. An ensambling operation is added at the end to combine prediction results from previous stages reducing the variance between single models. Our neural network segmentation algorithm reaches a mean Dice score of 0.96 and 0.74 for kidney and kidney tumors, respectively on 90 unseen test cases. The results obtained are promising and could be improved by incorporating prior knowledge about the benign cysts that regularly lower the tumor segmentation results.
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.