Neuroadaptations in the brain reward system caused by excessive alcohol intake, lead to drinking escalation and alcohol use disorder phenotypes. Activity-dependent neuroprotective protein (ADNP) is crucial for brain development, and is implicated in neural plasticity in adulthood. Here, we discovered that alcohol exposure regulates Adnp expression in the mesolimbic system, and that Adnp keeps alcohol drinking in moderation, in a sex-dependent manner. Specifically, Sub-chronic alcohol treatment (2.5 g/kg/day for 7 days) increased Adnp mRNA levels in the dorsal hippocampus in both sexes, and in the nucleus accumbens of female mice, 24 h after the last alcohol injection. Long-term voluntary consumption of excessive alcohol quantities (~10-15 g/kg/24 h, 5 weeks) increased Adnp mRNA in the hippocampus of male mice immediately after an alcohol-drinking session, but the level returned to baseline after 24 h of withdrawal. In contrast, excessive alcohol consumption in females led to long-lasting reduction in hippocampal Adnp expression. We further tested the regulatory role of Adnp in alcohol consumption, using the Adnp haploinsufficient mouse model. We found that Adnp haploinsufficient female mice showed higher alcohol consumption and preference, compared to Adnp intact females, whereas no genotype difference was observed in males. Importantly, daily intranasal administration of the ADNP-snippet drug candidate NAP normalized alcohol consumption in Adnp haploinsufficient females. Finally, female Adnp haploinsufficient mice showed a sharp increase in alcohol intake after abstinence, suggesting that Adnp protects against relapse in females. The current data suggest that ADNP is a potential novel biomarker and negative regulator of alcohol-drinking behaviors.
Alcohol and nicotine are the two most commonly-abused substances and are often used together. Nicotine enhances alcohol-drinking behaviors in humans and in animals, and was suggested to enhance the reinforcing properties of other reinforcers. Here, we show that nicotine-associated environment, rather than nicotine itself, enhances alcohol intake in rats. Adolescent rats received repeated intermittent injections of nicotine (0.4 mg/kg, i.p., 5 injections, every 3rd day) or saline. The injection was paired with their home cage, or with the subsequent alcohol self-administration context. Rats were then trained to self-administer 20% alcohol. Nicotine given in the home cage did not alter subsequent alcohol intake. However, pairing nicotine with the operant chamber during adolescence led to a long-lasting increased alcohol self-administration in adulthood, compared to nicotine pre-treatment in other contexts. This effect persisted 3 months after nicotine cessation, in a relapse test after abstinence. Furthermore, re-exposure to the nicotine-associated context in adult rats led to a decrease in glial cell line-derived neurotrophic factor (Gdnf) mRNA expression in the ventral tegmental area, an effect that leads to increased alcohol consumption, as we have previously reported. Our findings suggest that retrieval of nicotine-associated contextual memories from adolescence may gate alcohol intake in adulthood, with a possible involvement of GDNF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.