Locally correctable codes (LCCs) and locally testable codes (LTCs) are error-correcting codes that admit local algorithms for correction and detection of errors. Those algorithms are local in the sense that they only query a small number of entries of the corrupted codeword. The fundamental question about LCCs and LTCs is to determine the optimal tradeoff among their rate, distance, and query complexity. In this work, we construct the first LCCs and LTCs with constant rate, constant relative distance, and sub-polynomial query complexity. Specifically, we show that there exist LCCs and LTCs with block length n , constant rate (which can even be taken arbitrarily close to 1), and constant relative distance, whose query complexity is exp(Õ(√log n )) (for LCCs) and (log n ) O (log log n ) (for LTCs). In addition to having small query complexity, our codes also achieve better tradeoffs between the rate and the relative distance than were previously known to be achievable by LCCs or LTCs. Specifically, over large (but constant size) alphabet, our codes approach the Singleton bound, that is, they have almost the best-possible relationship between their rate and distance. Over the binary alphabet, our codes meet the Zyablov bound. Such tradeoffs between the rate and the relative distance were previously not known for any o ( n ) query complexity. Our results on LCCs also immediately give locally decodable codes with the same parameters.
In this work, we construct the first locally-correctable codes (LCCs), and locally-testable codes (LTCs) with constant rate, constant relative distance, and sub-polynomial query complexity. Specifically, we show that there exist binary LCCs and LTCs with block length n, constant rate (which can even be taken arbitrarily close to 1), constant relative distance, and query complexity exp(Õ( √ log n)). Previously such codes were known to exist only with Ω(n β ) query complexity (for constant β > 0), and there were several, quite different, constructions known.Our codes are based on a general distance-amplification method of Alon and Luby [AL96]. We show that this method interacts well with local correctors and testers, and obtain our main results by applying it to suitably constructed LCCs and LTCs in the non-standard regime of sub-constant relative distance.Along the way, we also construct LCCs and LTCs over large alphabets, with the same query complexity exp(Õ( √ log n)), which additionally have the property of approaching the Singleton bound: they have almost the best-possible relationship between their rate and distance. This has the surprising consequence that asking for a large alphabet error-correcting code to further be an LCC or LTC with exp(Õ( √ log n)) query complexity does not require any sacrifice in terms of rate and distance! Such a result was previously not known for any o(n) query complexity.Our results on LCCs also immediately give locally-decodable codes (LDCs) with the same parameters. * A preliminary version of this work appeared as [Mei14].
For a {0, 1}-valued matrix M let CC(M ) denote the deterministic communication complexity of the boolean function associated with M . The log-rank conjecture of Lovász and Saks [FOCS 1988] states that CC(M ) ≤ log c (rank(M )) for some absolute constant c where rank(M ) denotes the rank of M over the field of real numbers. We show that CC(M ) ≤ c · rank(M )/ log rank(M ) for some absolute constant c, assuming a well-known conjecture from additive combinatorics known as the Polynomial Freiman-Ruzsa (PFR) conjecture.Our proof is based on the study of the "approximate duality conjecture" which was recently suggested by Ben-Sasson and Zewi [STOC 2011] and studied there in connection to the PFR conjecture. First we improve the bounds on approximate duality assuming the PFR conjecture. Then we use the approximate duality conjecture (with improved bounds) to get the aforementioned upper bound on the communication complexity of low-rank martices, where this part uses the methodology suggested by Nisan and Wigderson [Combinatorica 1995].
In this work, we give the first construction of high-rate locally list-recoverable codes. Listrecovery has been an extremely useful building block in coding theory, and our motivation is to use these codes as such a building block. In particular, our construction gives the first capacity-achieving locally list-decodable codes (over constant-sized alphabet); the first capacity achieving globally list-decodable codes with nearly linear time list decoding algorithm (once more, over constant-sized alphabet); and a randomized construction of binary codes on the Gilbert-Varshamov bound that can be uniquely decoded in near-linear-time, with higher rate than was previously known.Our techniques are actually quite simple, and are inspired by an approach of Gopalan, Guruswami, and Raghavendra (Siam Journal on Computing, 2011) for list-decoding tensor codes. We show that tensor powers of (globally) list-recoverable codes are 'approximately' locally list-recoverable, and that the 'approximately' modifier may be removed by pre-encoding the message with a suitable locally decodable code. Instantiating this with known constructions of high-rate globally list-recoverable codes and high-rate locally decodable codes finishes the construction.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.