In this study, the copper-catalyzed Fenton-like reaction in the presence of bicarbonate (i.e., the Cu(II)/HCO3 − /H2O2 system) was examined for the phenol degradation. The rate of phenol degradation by the copper-catalyzed Fenton-like reaction ([Cu(II)]0 = 0.1 mM, [H2O2]0 = 10 mM, pH = 10) was accelerated by 17-fold in the presence of 50 mM HCO3 − . The rate of phenol degradation by the Cu(II)/HCO3 − /H2O2 system increased with increasing doses of Cu(II) and HCO3 − , but showed an optimal value for the H2O2 dose and pH at 5 mM and 10, respectively. The Cu(II)/HCO3 − /H2O2 system was selective in degrading phenolic compounds; benzoic acid was resistant to degradation. Cu(III) species (likely complexed forms with carbonate) are believed to be the reactive oxidants responsible for the phenol degradation by the Cu(II)/HCO3 − /H2O2 system. Meanwhile, aerating CO2 gas successfully accelerated the phenol degradation by the copper-catalyzed Fenton-like reaction, implying that CO2 aeration can be a practical option to supply bicarbonate when implementing the Cu(II)/HCO3 − /H2O2 system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.