Activity of the CFTR channel is regulated by phosphorylation of its regulatory domain (RD). In a previous study, we developed a bicistronic construct called DeltaR-Split CFTR, which encodes the front and back halves of CFTR as separate polypeptides without the RD. These fragments assemble to form a constitutively active CFTR channel. Coexpression of the third fragment corresponding to the missing RD restores regulation by PKA, and this is associated with dramatically enhanced binding of the phosphorylated RD. In the present study, we examined the effect of PKC phosphorylation on this PKA-induced interaction. We report here that PKC alone enhanced association of the RD with DeltaR-Split CFTR and that binding was further enhanced when the RD was phosphorylated by both kinases. Mutation of all seven PKC consensus sequences on the RD (7CA-RD) did not affect its association under basal (unphosphorylated) conditions but abolished phosphorylation-induced binding by both kinases. Iodide efflux responses provided further support for the essential role of RD binding in channel regulation. The basal activity of DeltaR-Split/7CA-RD channels was similar to that of DeltaR-Split/wild type (WT)-RD channels, whereas cAMP-stimulated iodide efflux was greatly diminished by removal of the PKC sites, indicating that 7CA-RD binding maintains channels in an inactive state that is unresponsive to PKA. These results suggest a novel mechanism for CFTR regulation in which PKC modulates PKA-induced domain-domain interactions.
The CFTR chloride channel is regulated by phosphorylation at PKA and PKC consensus sites within its regulatory region (R-region) through a mechanism, which is still not completely understood. We used a split-CFTR construct expressing the N-term-TMD1-NBD1 (Front Half; FH), TMD2-NBD2-C-Term (Back Half; BH), and the R-region as separate polypeptides (Split-R) in BHK cells, to investigate in situ how different phosphorylation conditions affect the R-region interactions with other parts of the protein. In proximity ligation assays, we studied the formation of complexes between the R-region and each half of the Split-CFTR. We found that at basal conditions, the density of complexes formed between the R-region and both halves of the split channel were equal. PKC stimulation alone had no effect, whereas PKA stimulation induced the formation of more complexes between the R-region and both halves compared to basal conditions. Moreover, PKC + PKA stimulation further enhanced the formation of FH-R complexes by 40% from PKA level. In cells expressing the Split-R with the two inhibitory PKC sites on the R-region inactivated (SR-S641A/T682A), density of FH-R complexes was much higher than in Split-R WT expressing cells after PKC or PKC + PKA stimulation. No differences were observed for BH-R complexes measured at all phosphorylation conditions. Since full-length CFTR channels display large functional responses to PKC + PKA in WT and S641A/T682A mutant, we conclude that FH-R interactions are important for CFTR function. Inactivation of consensus PKC site serine 686 (S686A) significantly reduced the basal BH-R interaction and prevented the PKC enhancing effect on CFTR function and FH-R interaction. The phospho-mimetic mutation (S686D) restored basal BH-R interaction and the PKC enhancing effect on CFTR function with enhanced FH-R interaction. As the channel function is mainly stimulated by PKA phosphorylation of the R-region, and this response is known to be enhanced 34 |
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.