Doxorubicin (DOX) is used in the treatment of cancer. However, cardiotoxicity is its major dose-limiting factor. Mechanism of DOX–cardiac toxicity is not completely elucidated. The aim of the current study was to explore whether the addition of subeffective dose of curcumin (100 mg/kg) to nebivolol would produce a better impact in treating DOX-induced cardiac toxicity in comparison with monotherapy. Male rats were used and subdivided into seven groups. Cardiac toxicity was induced in 6 groups by intraperitoneal injection of DOX over 23 days; of the six groups, five groups were treated with curcumin (100 and 200 mg/kg), nebivolol (1 and 2 mg/kg), and their combination; the sixth group was the control group used for comparison. Oral administration of curcumin and/or nebivolol attenuated DOX cardiotoxicity as manifested by increasing survival rate, improvement in body weight, heart index, and ECG parameters, increase in ventricular isoprenaline responses, and improvement in cardiac enzymes, oxidative stress, apoptosis, and histopathological picture. The addition of the current low subeffective dose of curcumin to nebivolol ameliorated DOX cardiac toxicity to a much greater extent than monotherapy showing better antioxidant and antiapoptotic effects versus the per se effect of nebivolol. Therefore, the current study encourages adding low dose of curcumin to potentiate the effect of nebivolol in the clinical management of cardiac toxicity improving the patients’ quality of life if proper clinical safety data are available.
Non-alcoholic fatty liver disease (NAFLD) is closely linked to insulin resistance, oxidative stress, and cytokine imbalance. Boswellic acids, a series of pentacyclic triterpene molecules that are produced by plants in the genus Boswellia, has been traditionally used for the treatment of a variety of diseases. This study aimed at evaluating the protective effect of boswellic acids in a model of diet-induced NAFLD in rats in comparison to the standard insulin sensitizer, pioglitazone. Rats were fed with a high-fat diet (HFD) for 12 weeks to induce NAFLD. Starting from week 5, rats received boswellic acids (125 or 250 mg/kg) or pioglitazone parallel to the HFD. Feeding with HFD induced hepatic steatosis and inflammation in rats. In addition, liver index, insulin resistance index, activities of liver enzymes, and serum lipids deviated from normal. Further, serum tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and cyclooxygenase 2 were elevated; this was associated with an increase in hepatic expression of inducible nitric oxide synthase (iNOS) and formation of 4-hydroxy-2-nonenal (HNE). Rats treated with boswellic acids (125 or 250 mg/kg) or pioglitazone showed improved insulin sensitivity and a reduction in liver index, activities of liver enzymes, serum TNF-α and IL-6 as well as hepatic iNOS expression and HNE formation compared to HFD group. Furthermore, at the cellular level, boswellic acids (250 mg/kg) ameliorated the expression of thermogenesis-related mitochondrial uncoupling protein-1 and carnitine palmitoyl transferase-1 in white adipose tissues. Data from this study indicated that boswellic acids might be a promising therapy in the clinical management of NAFLD if appropriate safety and efficacy data are available.
Insulin resistance increases risk of cardiovascular diseases. This work investigated the protective effect of pioglitazone on myocardial infarction (MI) in non-diabetic and diabetic rats, focusing on its role on advanced glycated endproducts (AGEs) and cardiac apoptotic machinery. Male rats were divided into 2 experiments: experiment I and II (non-diabetic and diabetic rats) were assigned as saline, MI (isoproterenol, 85 mg/kg, daily), and MI+pioglitazone (5, 10, and 20 mg/kg). Injection of isoproterenol in diabetic rats produced greater ECG disturbances compared to non-diabetic rats. Treatment with pioglitazone (5 mg/kg) reduced the infarct size and improved some ECG findings. Pioglitazone (10 mg/kg) enhanced ECG findings, improved the histopathological picture and downregulated apoptosis in cardiac tissues. Whereas the higher dose of pioglitazone (20 mg/kg) did not improve most of the measured parameters but rather worsened some of them, such as proapoptotic markers. Importantly, a positive correlation was found between serum AGEs and cardiac AGE receptors (RAGEs) versus caspase 3 expression in the two experiments. Therefore, the current effect of pioglitazone was, at least in part, mediated through downregulation of AGE-RAGE axis and inhibition of apoptosis. Consequently, these data suggest that pioglitazone, at optimized doses, may have utility in protection from acute MI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.