To meet the increased demand for wheat consumption, wheat cultivation in Sudan expanded southward to latitudes lower than 15°N, entering a new and warmer environment. Consequently, wheat breeders developed several wheat genotypes with high yields under these environmental conditions; however, the evaluation of the end-use quality of these genotypes is scarce. In this study, we assessed the end-use quality attributes of 20 wheat genotypes grown in three different environments in the Sudan (Wad Medani, Hudeiba, and Dongola). The results showed significant differences (P ≤ 0.01) in all quality tests among environments, genotypes and genotypes Versus environments. The findings obtained, covered wide ranges of test weight (TW, 76.6-85.25 kg/hL), thousand kernel weight (TKW, 28.70-48.48 g), protein (PC, 9.96-14.06%), wet gluten (WG, 28.63-46.53%), gluten index (GI, 36.36-92.77%), water holding capacity (WHC, 168.42-219.32%), falling number (FN, 508.00-974.67 sec), and sedimentation value (SV, 19.00-40.00 mL). Analysis of the traits, genotypes, and traits versus genotypes showed varied correlations in the three growing environments. The genotype G3 grown in either one or all of the three environments exhibits worthy performance and stability for most of the tested quality traits. The crossing of this genotype with high yield genotypes could produce cultivars with sufficient quality and marketability. 509
The present work examined the effect of genotype and environment on protein content and fractions, gluten and starch fraction, SSL (sodium stearoyl-2-lactylate) and DMG (distilled mono glyceride) binding ability of starch and specific loaf volume (SLV) of six wheat genotypes grown in three different environment. Genotype and environment significantly affected all quality attributes under investigation. However, protein content and fractions showed differences in relative effects of genotype and environment. Most of the protein quality characteristics were influenced more by genotype than environment. Size distribution of gluten subunits was significantly affected by genotype and environment. It was observed that as the flour protein content increased, the magnitudes of monomeric proteins appeared to rise, but glutenin decreased. Flour protein content was expressively associated with gliadin and dough making characteristics. Environment influenced both the amounts of total protein and the quantities of different protein fractions, which, in turn, influenced baking quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.