Abstract-As integrated circuits become increasingly more complex and expensive, the ability to make post-fabrication changes will become much more attractive. This ability can be realized using programmable logic cores. Currently, such cores are available from vendors in the form of "hard" rectangular layouts. In this paper, we focus on an alternative approach for fine-grain programmability: vendors supply a synthesizable RTL version of their programmable logic core (a "soft" core) and the integrated circuit designer synthesizes the programmable logic fabric using standard cells. Although this technique suffers in terms of speed, density, and power overhead, the task of integrating such cores is far easier than the task of integrating "hard" cores into an ASIC or SoC. When the required amount of programmable logic is small, this ease of use may be more important than the increased overhead. This paper presents two synthesizable "soft" programmable logic core architectures and describes their associated place and route issues. We compare the two architectures to each other, and to a "hard" programmable logic core. We also show how these cores can be made more efficient by creating a nonrectangular architecture, an option not usually available to "hard" core vendors. Finally, a proof-of-concept integrated circuit containing one of these cores is described.Index Terms-Field-programmable gate arrays, programmable logic, SoC design.
As integrated circuits become more and more complex, the ability to make post-fabrication changes will become more and more attractive. This ability can be realized using programmable logic cores. Currently, such cores are available from vendors in the form of a "hard" layout. In this paper, we focus on an alternative approach: vendors supply a synthesizable version of their programmable logic core (a "soft" core) and the integrated circuit designer synthesizes the programmable logic fabric using standard cells. Although this technique suffers increased speed, density, and power overhead, the task of integrating such cores is far easier than the task of integrating "hard" cores into an ASIC. For very small amounts of logic, this ease of use may be more important than the increased overhead. This paper presents two synthesizable programmable logic core architectures, describes the associated place and route CAD tools, and compares the two architectures to each other, and to a "hard" programmable logic core. It also shows how these cores can be made more efficient by creating a non-rectangular architecture, an option not available to "hard" core vendors.
As integrated circuits become more and more complex, the ability to make post-fabrication changes will become more and more attractive. This ability can be realized using programmable logic cores. Currently, such cores are available from vendors in the form of a "hard" layout. In this paper, we focus on an alternative approach: vendors supply a synthesizable version of their programmable logic core (a "soft" core) and the integrated circuit designer synthesizes the programmable logic fabric using standard cells. Although this technique suffers increased speed, density, and power overhead, the task of integrating such cores is far easier than the task of integrating "hard" cores into an ASIC. For very small amounts of logic, this ease of use may be more important than the increased overhead. This paper presents two synthesizable programmable logic core architectures, describes the associated place and route CAD tools, and compares the two architectures to each other, and to a "hard" programmable logic core. It also shows how these cores can be made more efficient by creating a non-rectangular architecture, an option not available to "hard" core vendors.
The ability of a compiler to exploit loop-level
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.