Recent reports indicate dominant roles of TRAAK and TREK-1 channels, i.e., mechanosensitive two-pore-domain potassium channels (K2P) at the nodes of Ranvier for action potential repolarization in mammalian peripheral nerves. Functional changes in mammalian peripheral nerve conduction by mechanical stretch studied by recording compound action potentials lack the necessary resolution to detect subtle neuromodulatory effects on conduction velocity. In this study, we developed a novel in vitro approach that enables single-fiber recordings from individual mouse sciatic nerve axons while delivering computer-controlled stepped stretch to the sciatic nerve trunk. Axial stretch instantaneously increased the conduction delay in both myelinated A-fibers and unmyelinated C-fibers. Increases in conduction delay linearly correlated with increases in axial stretch ratio for both A-and C-fibers. The slope of the increase in conduction delay versus stretch ratio was steeper in C-fibers than in A-fibers. Moderate axial stretch (14−19% of in vitro length) reversibly blocked 37.5% of unmyelinated C-fibers but none of the eight myelinated A-fibers tested. Application of arachidonic acid, an agonist to TRAAK and TREK-1 to sciatic nerve trunk, blocks axonal transmission in both A-and C-fibers with delayed onset and prolonged block. Also, the application of an antagonist ruthenium red showed a tendency of suppressing the stretch-evoked increase in conduction delay. These results could draw focused research on pharmacological and mechanical activation of K2P channels as a novel neuromodulatory strategy to achieve peripheral nerve block.
There is growing interest to better understand drug-induced cardiovascular complications and to predict undesirable side effects at as early a stage in the drug development process as possible. The purpose of this paper is to investigate computationally the influence of sodium ion channel blockage on cardiac electromechanics. To do so, we implement a myofiber orientation dependent passive stress model (Holzapfel-Ogden) in the multiphysics solver Chaste to simulate an imaged physiological model of the human ventricles. A dosage of a sodium channel blocker was then applied and its inhibitory effects on the electrical propagation across ventricles were modeled. We employ the Kerckhoffs active stress model to generate electrically excited contractile behavior of myofibers. Our predictions indicate that a delay in the electrical activation of ventricular tissue caused by the sodium channel blockage translates to a delay in the mechanical biomarkers that were investigated. Moreover, sodium channel blockage was found to increase left ventricular twist. A multiphysics computational framework from the cell level to the organ level was thus used to predict the effect of sodium channel blocking drugs on cardiac electromechanics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.