In many plant species synapsis starts at, or close to, the chromosome ends and this has been considered to be related to the distal location of chiasmata. In this regard we have studied the meiotic behavior of rye chromosome pair 5R in a wheat background using fluorescence in situ hybridization. The use of different DNA probes allowed the identification of the 2 rye homologues, their centromeres and subtelomeric heterochromatic chromomeres, and the telomeres of all chromosomes in prophase I and metaphase I. Three types of plants were analyzed: homozygotes for the standard chromosome 5R, homozygotes for a deficient chromosome 5R (del5R) with only the proximal 30% of its long arm (del5RL) and heterozygotes. Synapsis of the deficient chromosome arm pair del5RL was completed in most meiocytes at pachytene but the number of chiasmata formed was much lower than in the intact 5RL arm. Deletion facilitated the migration of the telomere of the accompanying chromosome arm 5RS during bouquet organization. This was followed by an increase of synapsis and chiasma frequency in this arm with regard to its counterpart of the intact chromosome. Results demonstrate that crossover formation depends on the DNA sequence or the chromatin organization of each chromosome region and that homologous alignment, synapsis and chiasma formation may be conditioned by chromosome conformation.
The Male Warrior Hypothesis (MWH) establishes that men's psychology has been shaped by intergroup competition to acquire and protect reproductive resources. In this context, sex-specific selective pressures would have favored cooperation with the members of one's group in combination with hostility towards outsiders. We investigate the role of developmental testosterone, as measured indirectly through static markers of prenatal testosterone (2D:4D digit ratio) and pubertal testosterone (body musculature and facial masculinity), on both cooperation and aggressive behavior in the context of intergroup conflict among men. Supporting the MWH, our results show that the intergroup conflict scenario promotes cooperation within group members and aggression toward outgroup members. Regarding the hormonal underpinnings of this phenomenon, we find that body musculature is positively associated with aggression and cooperation, but only for cooperation when context (intergroup competition) is taken into account. Finally, we did not find evidence that the formidability of the group affected individual rates of aggression or cooperation, controlling for individual characteristics.
In many organisms, homologous pairing and synapsis depend on the meiotic recombination machinery that repairs double-strand DNA breaks (DSBs) produced at the onset of meiosis. The culmination of recombination via crossover gives rise to chiasmata, which locate distally in many plant species such as rye, Secale cereale. Although, synapsis initiates close to the chromosome ends, a direct effect of regions with high crossover frequency on partner identification and synapsis initiation has not been demonstrated. Here, we analyze the dynamics of distal and proximal regions of a rye chromosome introgressed into wheat to define their role on meiotic homology search and synapsis. We have used lines with a pair of two-armed chromosome 1R of rye, or a pair of telocentrics of its long arm (1RL), which were homozygous for the standard 1RL structure, homozygous for an inversion of 1RL that changes chiasma location from distal to proximal, or heterozygous for the inversion. Physical mapping of recombination produced in the ditelocentric heterozygote (1RL/1RLinv) showed that 70% of crossovers in the arm were confined to a terminal segment representing 10% of the 1RL length. The dynamics of the arms 1RL and 1RLinv during zygotene demonstrates that crossover-rich regions are more active in recognizing the homologous partner and developing synapsis than crossover-poor regions. When the crossover-rich regions are positioned in the vicinity of chromosome ends, their association is facilitated by telomere clustering; when they are positioned centrally in one of the two-armed chromosomes and distally in the homolog, their association is probably derived from chromosome elongation. On the other hand, chromosome movements that disassemble the bouquet may facilitate chromosome pairing correction by dissolution of improper chromosome associations. Taken together, these data support that repair of DSBs via crossover is essential in both the search of the homologous partner and consolidation of homologous synapsis.
Objective: There is evidence that competitive conflicts are the main form of intrasexual competition among men. The capacity to recognize visual cues of fighting ability in competitors is thought to be an important characteristic that allows men to avoid the costs of contest competition. However, for an accurate comparison to take place, individuals need to compare the fighting ability of their competitors to their own to assess this asymmetry.Methods: In order to improve our understanding of this self-assessment process, here we study the relationship between visual fighting ability cues, namely (i) muscularity, as measured with a bioimpedance device, (ii) the real capacity to inflict cost to a rival based on strength, as measured with a hand grip dynamometer (HGS), and (iii) self-perceived fighting ability, as determined with a questionnaire. The study sample was 364 men between 18 and 38 years of age (M ± SD = 22.27 ± 3.99).Results: Our results confirm the expected positive relationship between upper-body muscularity and strength, while controlling for body mass index (BMI). However, muscularity explained only around 30.2% of the variance in strength. In addition, muscularity was related to self-perception of fighting ability in our sample, its effect being partially mediated by strength.Conclusion: The more muscular men perceive their fighting ability as being greater, and not only because they are stronger (at least in the HGS task). Accordingly, it seems that men take into account the overestimation the robustness of the relationship between strength and muscularity that prevails within his peers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.