Despite tremendous success against hematological malignancies, the performance of chimeric Ag receptor T cells against solid tumors remains poor. In such settings, the lack of success of this groundbreaking immunotherapy is in part mediated by ligand engagement of immune checkpoint molecules on the surface of T cells in the tumor microenvironment. Although CTLA-4 and programmed death-1 (PD-1) are well-established checkpoints that inhibit T cell activity, the engagement of glycans and glycan-binding proteins are a growing area of interest due to their immunomodulatory effects. This review discusses exemplary strategies to neutralize checkpoint molecules through an in-depth overview of genetic engineering approaches aimed at overcoming the inhibitory programmed death ligand-1 (PD-L1)/PD-1 axis in T cell therapies and summarizes current knowledge on glycoimmune interactions that mediate T cell immunosuppression.
Hydrogen peroxide is the most common reactive chemical that organisms face on the microbial battlefield. The rate with which hydrogen peroxide damages biomolecules required for life increases with temperature, yet little is known about how organisms cope with this temperature-dependent threat. Here, we show that Caenorhabditis elegans nematodes use temperature information perceived by sensory neurons to cope with the temperature-dependent threat of hydrogen peroxide produced by the pathogenic bacterium Enterococcus faecium. These nematodes preemptively induce the expression of specific hydrogen peroxide defenses in response to perception of high temperature by a pair of sensory neurons. These neurons communicate temperature information to target tissues expressing those defenses via an insulin/IGF1 hormone. This strategy, which we call “enhancer sensing,” is the first example of a multicellular organism inducing their defenses to a chemical when they sense an inherent enhancer of the reactivity of that chemical.
Hydrogen peroxide is the most common reactive chemical that organisms face on the microbial battlefield. The rate with which hydrogen peroxide damages biomolecules required for life increases with temperature, yet little is known about how organisms cope with this temperature-dependent threat. Here, we show that Caenorhabditis elegans nematodes use temperature information perceived by sensory neurons to cope with the temperature-dependent threat of hydrogen peroxide produced by the pathogenic bacterium Enterococcus faecium. These nematodes preemptively induce the expression of specific hydrogen peroxide defenses in response to perception of high temperature by a pair of sensory neurons. These neurons communicate temperature information to target tissues expressing those defenses via an insulin/IGF1 hormone. This is the first example of a multicellular organism inducing their defenses to a chemical when they sense an inherent enhancer of the reactivity of that chemical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.