Field studies were conducted on 47 swine farms in Illinois during 1992 and 1993 to identify sources and reservoirs of Toxoplasma gondii infection. Blood samples were obtained from swine and from trapped wildlife. Serum antibodies to T. gondii were determined using the modified agglutination test, incorporating mercaptoethanol. Antibodies to T. gondii (titer > or = 25) were found in 97 of 4,252 (2.3%) finishing pigs, 395 of 2,617 (15.1%) sows, 267 of 391 (68.3%) cats, 126 of 188 (67.0%) raccoons, 7 of 18 (38.9%) skunks, 29 of 128 opossums (22.7%), 6 of 95 (6.3%) rats, 3 of 61 (4.9%) white-footed mice (Peromyscus sp.), and 26 of 1,243 (2.1%) house mice (Mus musculus). Brains and hearts of rodents trapped on the farm were bioassayed in mice for the presence of T. gondii. Toxoplasma gondii was recovered from tissues of 7 of 1,502 (0.5%) house mice, 2 of 67 (3.0%) white-footed mice, and 1 of 107 (0.9%) rats. Feces of 274 cats trapped on the farm and samples of feed, water, and soil were bioassayed in mice for the presence of T. gondii oocysts. Toxoplasma gondii was isolated from 2 of 491 (0.4%) feed samples, 1 of 79 (1.3%) soil samples, and 5 of 274 (1.8%) samples of cat feces. All mammalian species examined were reservoirs of T. gondii infection. All farms had evidence of T. gondii infection either by detection of antibodies in swine or other mammalian species, or by detection of oocysts, or by recovery from rodents by bioassay. The possibility of transmission of T. gondii to swine via consumption of rodents, feed, and soil was confirmed.
We used radio‐telemetry and collar‐mounted activity sensors to compare home range size, habitat use, and activity patterns of owned and unowned free‐roaming cats on the outskirts of Champaign‐Urbana, Illinois, USA. Owned cats (3 M, 8 F) had smaller home ranges than unowned cats (6 M, 10 F), but we failed to detect consistent differences in home range size between the sexes or among seasons. Home ranges of unowned cats included more grassland and urban area than predicted based on availability in all seasons, and farmsteads were selected in fall and winter. Within home ranges, unowned cats shifted their use of habitats among seasons in ways that likely reflected prey availability, predation risk, and environmental stress, whereas habitat use within home ranges by owned cats did not differ from random. Unowned cats were more nocturnal and showed higher overall levels of activity than owned cats. Space use and behavioral differences between owned and unowned cats supported the hypothesis that the care a cat owner provides influences the impact a cat has on its environment, information that is important for making decisions on controlling cat populations. © 2011 The Wildlife Society.
Strategies to contain the spread of disease often are developed with incomplete knowledge of the possible outcomes but are intended to minimize the risks associated with delaying control. Culling of game species by government agencies is one approach to control disease in wild populations but is unpopular with hunters and wildlife enthusiasts, politically unpalatable, and erodes public support for agencies responsible for wildlife management. We addressed the functional differences between hunting and government culling programs for managing chronic wasting disease (CWD) in white-tailed deer by comparing prevalence over a 10-year period in Illinois and Wisconsin. When both Illinois and Wisconsin were actively culling from 2003 - 2007, there were no statistical differences between state CWD prevalence estimates. Wisconsin government culling concluded in 2007 and average prevalence over the next five years was 3.09 ± 1.13% with an average annual increase of 0.63%. During that same time period, Illinois continued government culling and there was no change in prevalence throughout Illinois. Despite its unpopularity among hunters, localized culling is a disease management strategy that can maintain low disease prevalence while minimizing impacts on recreational deer harvest.
Nucleic acid sequences of the prion gene (PRNP) were examined and genotypes compiled for 76 white-tailed deer from northern Illinois, which previously tested positive for chronic wasting disease (CWD), and 120 negative animals selected to control for geographic location and age. Nine nucleotide polymorphisms, seven silent and two coding, were found in the sampled population. All observed polymorphisms except two of very low frequency were observed in both negative and positive animals, although five polymorphic loci had significantly different distributions of alleles between infected and non-infected individuals. Nucleotide base changes 60C/T, 285A/C, 286G/A and 555C/T were observed with higher than expected frequencies in CWD negative animals suggesting disease resistance, while 153C/T was observed more than expected in positive animals, suggesting susceptibility. The two coding polymorphisms, 285A/C (Q95H) and 286G/A (G96S), have been described in white-tailed deer populations sampled in Colorado and Wisconsin. Frequency distributions of coding polymorphisms in Wisconsin and Illinois deer populations were different, an unexpected result considering the sampled areas are less than 150 km apart. The total number of polymorphisms per animal, silent or coding, was negatively correlated to disease status. The potential importance of silent polymorphisms
We evaluated population management programs for controlling chronic wasting disease (CWD) in wild white-tailed deer in Illinois between November 2002 and March 2008. The intervention consisted of measures of deer removal from three deer population control programs: Illinois Department of Natural Resources culling, deer population control permits and nuisance deer removal permits. We included in the analysis a total of 14,650 white-tailed deer CWD test results. These data also included location and demographic data collected from both deer harvested in the interventions as well as deer from hunter harvests and deer vehicle collisions. We quantified intervention pressures as the number of years of intervention, the total number of deer removed and the average number of deer removed per year. We accounted for temporal and spatial variations of intervention by using mixed logistic regression to model the association between intervention pressures and CWD prevalence change. The results showed that deer population management intervention as practiced in Illinois during the study period was negatively associated with CWD prevalence and the strength of association varied depending on age of deer and the measure of intervention pressure. The population management programs showed a more consistent association with reduced CWD prevalence in fawn and yearling white-tailed deer than in adult deer. Our results also suggested that frequent and continuing intervention events with at least moderate intensity of culling were needed to reduce CWD prevalence. A longer study period, however, is needed to make a more definite conclusion about the effectiveness of similar population management programs for controlling CWD in wild white-tailed deer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.