We reported previously that the neuropeptide oxytocin attenuates stress-induced hypothalamo-pituitary-adrenal (HPA) activity and anxiety behavior. This study sought to identify forebrain target sites through which oxytocin may mediate its anti-stress effects. Ovariectomized, estradiol-treated rats received intracerebroventricular infusions of oxytocin (1 or 10 ng/hr) or vasopressin (10 ng/hr), and the patterns of neuronal activation after restraint stress were determined by semiquantitative mapping of c-fos mRNA expression. Oxytocin administration significantly attenuated the release of ACTH and corticosterone and the increase in corticotropin-releasing factor mRNA expression in the hypothalamic paraventricular nucleus (PVN) in response to 30 min restraint. Restraint also induced the expression of c-fos mRNA in selective regions of the forebrain, including the PVN, paraventricular thalamic nucleus, habenula, medial amygdala, ventrolateral septum (LSV), most subfields of the dorsal and ventral hippocampus, and piriform and endopiriform cortices. In most cases, this level of gene expression was unaffected by concomitant administration of oxytocin. However, in the PVN, LSV, and throughout all subfields of the dorsal hippocampus, restraint evoked no detectable increase in c-fos mRNA in animals treated with either dose of oxytocin. Vasopressin had no effects on either HPA axis responses or neuronal activation in response to restraint, indicating that the effects were highly peptide selective. These data show that central oxytocin attenuates both the stress-induced neuroendocrine and molecular responses of the HPA axis and that the dorsal hippocampus, LSV, and PVN constitute an oxytocin-sensitive forebrain stress circuit.
We have investigated whether exposure to Gram-negative bacterial endotoxin in early neonatal life can alter neuroendocrine and immune regulation in adult animals. Exposure of neonatal rats to a low dose of endotoxin resulted in long-term changes in hypothalamic-pituitary-adrenal (HPA) axis activity, with elevated mean plasma corticosterone concentrations that resulted from increased corticosterone pulse frequency and pulse amplitude. In addition to this marked effect on the development of the HPA axis, neonatal endotoxin exposure had long-lasting effects on immune regulation, including increased sensitivity of lymphocytes to stressinduced suppression of proliferation and a remarkable protection from adjuvant-induced arthritis. These findings demonstrate a potent and long-term effect of neonatal exposure to inflammatory stimuli that can program major changes in the development of both neuroendocrine and immunological regulatory mechanisms.
The long-term consequences of neonatal endotoxin exposure on hypothalamic-pituitary-adrenal axis (HPA) function were assessed in adult female and male Long-Evans rats. At 3 and 5 d of age, pups were administered endotoxin (Salmonella enteritidis, 0.05 mg/kg, i.p.) at a dose that provokes a rapid and sustained physiological response, but with no mortality. As adults, neonatally endotoxin-treated animals exhibited significantly greater adrenocorticotrophic hormone (ACTH) and corticosterone responses to restraint stress than controls. In addition, dexamethasone pretreatment was less effective in suppressing ACTH responses to restraint stress in endotoxin-treated animals than in controls, suggesting decreased negative-feedback sensitivity to glucocorticoids. Neonatal endotoxin treatment elevated resting-state median eminence levels of corticotropin-releasing hormone (CRH) and arginine vasopressin in adult male animals, and arginine vasopressin in both adult males and females. Neonatal exposure to endotoxin also increased CRH mRNA expression in the paraventricular nucleus of the hypothalamus of adult males, with no difference in females. Finally, glucocorticoid receptor density was reduced across a wide range of brain regions in the neonatal endotoxin-treated, adult animals. These data illustrate the interactive nature of immune and endocrine systems during development. It appears that endotoxin exposure during critical stages of development decreases glucocorticoid negative-feedback inhibition of ACTH secretagogue synthesis, thus increasing HPA responsiveness to stress. The implication of these findings is that exposure to gram-negative LPS in early life can alter the development of neural systems which govern endocrine responses to stress and may thereby predispose individuals to stress-related pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.