Documenting the processes that facilitate exhumation of ultrahigh-pressure (UHP) rocks at convergent margins is critical for understanding orogen dynamics. Here, we present structural and temperature data from the Himalayan UHP Tso Morari nappe (TMN) and overlying nappes, which we integrate with published pressure-temperature-time constraints to refine interpretations for their structural evolution and exhumation history. Our data indicate that the 5.5-km-thick TMN is the upper portion of a penetratively deformed ductile slab, which was extruded via distributed, pure shear-dominated, top-down-to-east shearing. Strain in the TMN is recorded by high-strength quartz fabrics (density norms between 1.74 and 2.86) and finite strain data that define 63% transport-parallel lengthening and 46% transport-normal shortening. The TMN attained peak temperatures of~500-600°C, which decrease in the overlying Tetraogal and Mata nappes to~150-300°C, defining a field gradient as steep as 67°C/km. Within the overlying nappes, quartz fabric strength decreases (density norms between 1.14 and 1.21) and transport-parallel lengthening and transport-normal shortening decrease to 14% and 18%, respectively. When combined with published 40 Ar/ 39 Ar thermochronometry, quartz fabric deformation temperatures as low as~330°C indicate that the top-to-east shearing that exhumed the TMN continued until~30 Ma. Peak temperatures constrain the maximum depth of the overlying Mata nappe to 12.5-17.5 km; when combined with published fission-track thermochronometry, this provides further support that the TMN was not underplated at upper crustal levels until~30 Ma. The long-duration, convergence-subnormal shearing that exhumed the TMN outlasted rapid India-Asia convergence by~15 Myr and may be the consequence of strain partitioning during oblique convergence.
Crustal temperature conditions can strongly influence the evolution of deformation during orogenesis. The Sevier hinterland plateau in Nevada and western Utah (“Nevadaplano”) experienced a Late Cretaceous episode of shallow-crustal metamorphism and granitic magmatism. Here, we investigate the thermal history of the Nevadaplano by measuring peak thermal field gradients attained in the upper 10–20 km of the crust along an east-west transect through nine ranges in eastern Nevada and western Utah, by integrating Raman spectroscopy of carbonaceous material thermometry and published conodont alteration indices with reconstructed cross sections. Thermal field gradients of 29 ± 3 °C/km were obtained in the House and Confusion Ranges in westernmost Utah. The Deep Creek, Schell Creek, and Egan Ranges in easternmost Nevada yielded elevated gradients of 49 ± 7 °C/km, 36 ± 3 °C/km, and 32 ± 6 °C/km, respectively. Moving westward, the White Pine, Butte, Pancake, and Fish Creek Ranges exhibit gradients typically between ~20–30 °C/km. The elevated thermal gradients in easternmost Nevada are interpreted to have been attained during ca. 70–90 Ma granitic magmatism and metamorphism and imply possible partial melting at ~18 km depths. Our data are compatible with published interpretations of Late Cretaceous lithospheric mantle delamination under the Sevier hinterland, which triggered lower-crustal anatexis and the resulting rise of granitic melts. The lack of evidence for structures that could have accommodated deep burial of rocks in the nearby Northern Snake Range metamorphic core complex, combined with thermal gradients from adjacent ranges that are ~1.5–3 times higher than those implied by thermobarometry in the Northern Snake Range, further highlights the debate over possible tectonic overpressure in Cordilleran core complexes. Cross-section retro-deformation defines 73.4 ± 4.6 km (76 ± 8%) of extension across eastern Nevada and 15 km of shortening in the Eastern Nevada fold belt.
Documenting the kinematics of detachment faults can provide fundamental insights into the ways in which the lithosphere evolves during high-magnitude extension. Although it has been investigated for 70 yr, the displacement magnitude on the Northern Snake Range décollement in eastern Nevada remains vigorously debated, with published estimates ranging between <10 and 60 km. To provide constraints on displacement on the Northern Snake Range décollement, we present retrodeformed cross sections across the west-adjacent Schell Creek and Duck Creek Ranges, which expose a system of low-angle faults that have previously been mapped as thrust faults. We reinterpret this fault system as the extensional Schell Creek Range detachment system, which is a stacked series of top-down-to-the-ESE brittle normal faults with 5°–10° stratigraphic cutoff angles that carry 0.1–0.5-km-thick sheets that are up to 8–13 km long. The western portion of the Schell Creek Range detachment system accomplished ~5 km of structural attenuation and is folded across an antiformal culmination that progressively grew during extension. Restoration using an Eocene unconformity as a paleohorizontal marker indicates that faults of the Schell Creek Range detachment system were active at ~5°–10°E dips. The Schell Creek Range detachment system accommodated 36 km of displacement via repeated excision, which is bracketed between ca. 36.5 and 26.1 Ma by published geochronology. Based on their spatial proximity, compatible displacement sense, overlapping deformation timing, and the similar stratigraphic levels to which these faults root, we propose that the Schell Creek Range detachment system represents the western breakaway system for the Northern Snake Range décollement. Debates over the pre-extensional geometry of the Northern Snake Range décollement hinder an accurate cumulative extension estimate, but our reconstruction shows that the Schell Creek Range detachment system fed at least 36 km of displacement eastward into the Northern Snake Range décollement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.