plasmidSPAdes is publicly available at http://spades.bioinf.spbau.ru/plasmidSPAdes/ CONTACT: d.antipov@spbu.ruSupplementary information: Supplementary data are available at Bioinformatics online.
A closer look at centromeres Centromeres are key for anchoring chromosomes to the mitotic spindle, but they have been difficult to sequence because they can contain many repeating DNA elements. These repeats, however, carry regularly spaced, distinctive sequence markers because of sequence heterogeneity between the mostly, but not completely, identical DNA sequence repeats. Such differences aid sequence assembly. Naish et al . used ultra-long-read DNA sequencing to establish a reference assembly that resolves all five centromeres in the small mustard plant Arabidopsis . Their view into the subtly homogenized world of centromeres reveals retrotransposons that interrupt centromere organization and repressive DNA methylation that excludes centromeres from meiotic crossover repair. Thus, Arabidopsis centromeres evolve under the opposing forces of sequence homogenization and retrotransposon disruption. —PJH
Motivation: Plasmids are stably maintained extra-chromosomal genetic elements that replicate independently from the host cell's chromosomes. Although plasmids harbor biomedically important genes, (such as genes involved in virulence and antibiotics resistance), there is a shortage of specialized software tools for extracting and assembling plasmid data from whole genome sequencing projects. Results: We present the plasmidSPAdes algorithm and software tool for assembling plasmids from whole genome sequencing data and benchmark its performance on a diverse set of bacterial genomes. Availability and implementation: PLASMIDSPADES is publicly available at http://spades.bioinf.spbau.ru/plasmidSPAdes/
Rootless plants in the genus Wolffia are some of the fastest growing known plant on Earth.Wolffia have a reduced body plan, primarily multiplying through a budding-type of asexual reproduction. Here we generated draft reference genomes for Wolffia australiana (Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from W. australiana clones confirmed loss of several hundred genes that are highly conserved amongst flowering plants, including genes involved in root developmental and light signaling pathways. Wolffia has also lost most of the conserved NLR genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of Wolffia genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ~40% found in several model plants under the same condition. In contrast to the model plants Arabidopsis and rice, many of the pathways associated with multi-cellular and developmental processes are not under TOD control in W. australiana, where genes that cycle the condition tested predominantly have carbon processing and chloroplast-related functions. The Wolffia genome and TOD expression dataset thus provide insight into the interplay between a streamlined plant body plan and optimized growth.
Centromeres attach chromosomes to spindle microtubules during cell division and, despite this conserved role, show paradoxically rapid evolution and are typified by complex repeats. We used ultra-long-read sequencing to generate the Col-CEN Arabidopsis thaliana genome assembly that resolves all five centromeres. The centromeres consist of megabase-scale tandemly repeated satellite arrays, which support high CENH3 occupancy and are densely DNA methylated, with satellite variants private to each chromosome. CENH3 preferentially occupies satellites with least divergence and greatest higher-order repetition. The centromeres are invaded by ATHILA retrotransposons, which disrupt genetic and epigenetic organization of the centromeres. Crossover recombination is suppressed within the centromeres, yet low levels of meiotic DSBs occur that are regulated by DNA methylation. We propose that Arabidopsis centromeres are evolving via cycles of satellite homogenization and retrotransposon-driven diversification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.